ON SOLUTIONS OF THE VOLTERRA EQUATION IN THE SPACE OF FUNCTIONS OF BOUNDED VARIATION

被引:0
|
作者
Matute, J. [1 ]
机构
[1] Univ Los Andes, Dept Matemat, Merida 5101, Venezuela
来源
关键词
Volterra Integral Equation; Existence and Uniqueness of Solutions; Functions of Bounded Variation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use a Leray-Schauder alternative in order to prove the existence and uniqueness of solutions for the Volterra equation in the Banach space of functions of bounded variation.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [1] BOUNDED SOLUTIONS OF A VOLTERRA EQUATION
    GRIPENBERG, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (01) : 18 - 22
  • [2] Bounded solutions and Lp-solutions of a Volterra integral equation in a Banach space
    Yushchenko H.Y.
    Journal of Mathematical Sciences, 2013, 191 (3) : 470 - 478
  • [3] ON THE HAMMERSTEIN EQUATION IN THE SPACE OF FUNCTIONS OF BOUNDED phi-VARIATION IN THE PLANE
    Azocar, Luis
    Leiva, Hugo
    Matute, Jesus
    Merentes, Nelson
    ARCHIVUM MATHEMATICUM, 2013, 49 (01): : 51 - 64
  • [4] ASYMPTOTIC SPECTRA OF BOUNDED SOLUTIONS OF A NONLINEAR VOLTERRA EQUATION
    STAFFANS, OJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (03) : 365 - 382
  • [5] THE DUAL OF THE SPACE OF FUNCTIONS OF BOUNDED VARIATION
    Aye, Khaing Khaing
    Lee, Peng Yee
    MATHEMATICA BOHEMICA, 2006, 131 (01): : 1 - 9
  • [6] Multiplication in the space of functions of bounded variation
    Kowalczyk, Stanislaw
    Turowska, Malgorzata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 696 - 704
  • [7] ASYMPTOTIC-BEHAVIOR OF BOUNDED SOLUTIONS OF A NONLINEAR VOLTERRA EQUATION
    LONDEN, SO
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (06) : 849 - 875
  • [8] A Qualitative Study of Solutions of Nonlinear Volterra Integral Equation in the Plane, from the Perspective of Shiba Bounded Variation
    Perez, Liliana
    Rodriguez, Luz
    Ereu, Jurancy
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024
  • [9] FUNCTIONS WITH BOUNDED VARIATION IN LOCALLY CONVEX SPACE
    Duchon, Miloslav
    Debieve, Camille
    REAL FUNCTIONS '10: MEASURES, TOPOLOGY, INTEGRATION, BERNSTEIN APPROXIMATION, 2011, 49 : 89 - +
  • [10] BOUNDED SOLUTIONS OF THE BOLTZMANN EQUATION IN THE WHOLE SPACE
    Alexandre, Radjesvarane
    Morimoto, Yoshinori
    Ukai, Seiji
    Xu, Chao-Jiang
    Yang, Tong
    KINETIC AND RELATED MODELS, 2011, 4 (01) : 17 - 40