SINGULAR CONTINUOUS SPECTRUM OF HALF-LINE SCHRODINGER OPERATORS WITH POINT INTERACTIONS ON A SPARSE SET

被引:4
|
作者
Lotoreichik, Vladimir [1 ]
机构
[1] St Petersburg State Univ IT Mech & Opt, Dept Math, Kronverkskiy Pr 49, St Petersburg 197101, Russia
关键词
half-line Schrodinger operators; delta-interactions; delta'-interactions; singular continuous spectrum;
D O I
10.7494/OpMath.2011.31.4.615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a discrete set X = {x(n)}(n is an element of N0) on the half-line 0 = x(0) < x(1) < x(2) < x(3) < ....< x(n) <...< +infinity is sparse if the distances Delta x(n) = x(n+)1-x(n) between neighbouring points satisfy the condition Delta x(n) /x(n-1)->+infinity. In this paper half-line Schrdinger operators with point delta-and delta'-interactions on a sparse set are considered. Assuming that strengths of point interactions tend to 1 we give simple sufficient conditions for such Schrdinger operators to have non-empty singular continuous spectrum and to have purely singular continuous spectrum, which coincides with R+.
引用
收藏
页码:615 / 628
页数:14
相关论文
共 50 条
  • [1] A characterization of singular Schrodinger operators on the half-line
    Scandone, Raffaele
    Luperi Baglini, Lorenzo
    Simonov, Kyrylo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 923 - 941
  • [2] Multidimensional Schrodinger operators whose spectrum features a half-line and a Cantor set
    Damanik, David
    Fillman, Jake
    Gorodetski, Anton
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [3] Homogeneous Schrodinger Operators on Half-Line
    Bruneau, Laurent
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2011, 12 (03): : 547 - 590
  • [4] SINGULAR INTEGRAL OPERATORS ON A HALF-LINE
    CORDES, HO
    HERMAN, EA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1966, 56 (06) : 1668 - &
  • [5] Schrodinger Wave Operators on the Discrete Half-Line
    Inoue, Hideki
    Tsuzu, Naohiro
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2019, 91 (05)
  • [6] Half-line Schrodinger operators with no bound states
    Damanik, D
    Killip, R
    ACTA MATHEMATICA, 2004, 193 (01) : 31 - 72
  • [7] Trace formulas for Schrodinger operators on the half-line
    Demirel, Semra
    Usman, Muhammad
    BULLETIN OF MATHEMATICAL SCIENCES, 2011, 1 (02) : 397 - 427
  • [8] On Schrodinger Operators with Inverse Square Potentials on the Half-Line
    Derezinski, Jan
    Richard, Serge
    ANNALES HENRI POINCARE, 2017, 18 (03): : 869 - 928
  • [9] Schrodinger Operators on a Half-Line with Inverse Square Potentials
    Kovarik, H.
    Truc, F.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 170 - 176
  • [10] Schrodinger operators on half-line with shrinking potentials at the origin
    Dell'Antonio, Gianfausto
    Michelangeli, Alessandro
    ASYMPTOTIC ANALYSIS, 2016, 97 (1-2) : 113 - 138