A theoretical overview of Krylov subspace methods

被引:8
|
作者
Weiss, R
机构
[1] Rechenzentrum der Universität Karlsruhe, D-76128 Karlsruhe
关键词
D O I
10.1016/0168-9274(95)00084-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey Krylov subspace methods for the solution of linear systems with focus on commonly used and recently developed methods. The approach is theoretical and complementary to the engineering-based first article of this special issue. In particular convergence results are derived from a general theoretical framework, compiled and analyzed.
引用
收藏
页码:207 / 233
页数:27
相关论文
共 50 条
  • [1] Krylov subspace methods in control: An overview
    Datta, BN
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3844 - 3848
  • [2] Preconditioners for Krylov subspace methods: An overview
    Pearson J.W.
    Pestana J.
    Pestana, Jennifer (jennifer.pestana@strath.ac.uk), 1600, Wiley-VCH Verlag (43):
  • [3] Preconditioned Krylov subspace methods
    Saad, Y
    ALGORITHMS FOR LARGE SCALE LINEAR ALGEBRAIC SYSTEMS: APPLICATIONS IN SCIENCE AND ENGINEERING, 1998, 508 : 131 - 149
  • [4] KRYLOV SUBSPACE METHODS ON SUPERCOMPUTERS
    SAAD, Y
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (06): : 1200 - 1232
  • [5] Extrapolation methods as nonlinear Krylov subspace methods
    McCoid, Conor
    Gander, Martin J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 693 : 83 - 97
  • [6] Analysis of augmented Krylov subspace methods
    Saad, Y
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (02) : 435 - 449
  • [7] Spectral Variants of Krylov Subspace Methods
    Brígida Molina
    Marcos Raydan
    Numerical Algorithms, 2002, 29 : 197 - 208
  • [8] On the convergence of restarted Krylov subspace methods
    Simoncini, V
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 430 - 452
  • [9] Krylov subspace split Bregman methods
    Alotaibi, Majed
    Buccini, Alessandro
    Reichel, Lothar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 371 - 390
  • [10] Krylov subspace split Bregman methods
    Alotaibi, Majed
    Buccini, Alessandro
    Reichel, Lothar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 371 - 390