GROUP THEORETICAL-ANALYSIS OF DISPERSIVE LONG-WAVE EQUATIONS IN 2 SPACE DIMENSIONS

被引:120
|
作者
PAQUIN, G
WINTERNITZ, P
机构
[1] Centre de Recherches Mathématiques, Université de Montréal, Montréal, Que. H3C 3J7
来源
PHYSICA D | 1990年 / 46卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0167-2789(90)90115-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The symmetry algebra of an integrable dispersive long-wave equation in two space dimensions is shown to be infinite-dimensional and to have a Kac-Moody-Virasoro structure. The corresponding symmetry group is used to generate a large number of new solutions, in particular solitons, kinks and periodic waves. These waves have wave crests of quite general shapes. The results are compared to those for a nonintegrable two-space-dimensional dispersive long-wave equation, for which the symmetry group is finite-dimensional and wave crests are always straight lines. © 1990.
引用
收藏
页码:122 / 138
页数:17
相关论文
共 50 条