CHAOS IN WAVE MECHANICS WITH A LOGARITHMIC NONLINEARITY

被引:1
|
作者
KOSCHANY, A
KUFFER, J
OBERMAIR, GM
机构
[1] Naturwissenschaftliche Fakultät II - Physik, Universität Regensburg, W-8400 Regensburg
关键词
D O I
10.1016/0375-9601(92)90213-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to extract chaotic features from the nonlinear extension of wave mechanics proposed by Bialynicki-Birula and Mycielski [Ann. Phys. 100 (1976) 621 we examine - within an ad hoc model involving the one-band tight binding Hamiltonian - the time evolution of a periodic wave function of period s in a periodic potential of period 2-pi/alpha. For alpha=2-pi-r/s the quantum dynamics reduces to a finite number of dimensions and can be expressed in terms of a classical Hamilton system with 2s-dimensional phase space. Standard methods of investigation show that the nonlinearity may produce ergodicity and positive Lyapunov exponents.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 50 条
  • [1] Applications of wave equations with logarithmic nonlinearity in fluid mechanics
    Zloshchastiev, Konstantin G.
    XXIII FLUID MECHANICS CONFERENCE (KKMP 2018), 2018, 1101
  • [2] WAVE EQUATIONS WITH LOGARITHMIC NONLINEARITY ON HYPERBOLIC SPACES
    Wang, Chengbo
    Zhang, Xiaoran
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [3] Delayed wave equation with logarithmic variable-exponent nonlinearity
    Kafini, Mohammad
    Noor, Maher
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (05): : 2974 - 2993
  • [4] Convergence to a Traveling Wave in the Logarithmic Diffusion Equation with a Bistable Nonlinearity
    Matsuzawa, Hiroshi
    Monobe, Harunori
    Shimojo, Masahiko
    Yanagida, Eiji
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (01) : 125 - 151
  • [5] Fourth order wave equation with nonlinear strain and logarithmic nonlinearity
    Xu, Runzhang
    Lian, Wei
    Kong, Xiangkun
    Yang, Yanbing
    APPLIED NUMERICAL MATHEMATICS, 2019, 141 : 185 - 205
  • [6] On a class of semilinear nonclassical fractional wave equations with logarithmic nonlinearity
    Vo Van, Au
    Thi, Kim Van Ho
    Nguyen, Anh Tuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (14) : 11022 - 11045
  • [7] Stability of viscoelastic wave equation with distributed delay and logarithmic nonlinearity
    Lv, Mengxian
    Hao, Jianghao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4728 - 4750
  • [8] Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity
    Younes, Bidi
    Beniani, Abderrahmane
    Zennir, Khaled
    Hajjej, Zayd
    Zhang, Hongwei
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (09): : 5268 - 5286
  • [9] Initial boundary value problem for a damped wave equation with logarithmic nonlinearity
    Li, Haixia
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 993 - 1008
  • [10] THE LIFESPAN OF SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION WITH A STRONG DAMPING AND LOGARITHMIC NONLINEARITY
    Liao, Menglan
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (03): : 781 - 792