MAXIMUM-LIKELIHOOD VARIANCE-COMPONENTS ESTIMATION FOR BINARY DATA

被引:157
|
作者
MCCULLOCH, CE [1 ]
机构
[1] CORNELL UNIV,CTR STAT,ITHACA,NY 14853
关键词
EM ALGORITHM; FIXED AND RANDOM EFFECTS; GENERALIZED LINEAR MODELS; MONTE-CARLO MARKOV CHAIN; PROBIT;
D O I
10.2307/2291229
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a class of probit normal models for binary data and describe ML and REML estimation of variance components for that class as well as best prediction for the realized values of the random effects. ML estimates are calculated using an EM algorithm; for complicated models EM includes a Gibbs step. The computations are illustrated through two examples.
引用
收藏
页码:330 / 335
页数:6
相关论文
共 50 条