A COMBINATORIAL PROOF OF THE CAYLEY-HAMILTON THEOREM

被引:34
|
作者
STRAUBING, H
机构
关键词
D O I
10.1016/0012-365X(83)90164-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [1] A Proof of the Cayley-Hamilton Theorem
    Bernhardt, Chris
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (05): : 456 - 457
  • [2] DIRECT PROOF OF CAYLEY-HAMILTON THEOREM
    LOVELOCK, D
    [J]. MATRIX AND TENSOR QUARTERLY, 1971, 21 (03): : 84 - &
  • [3] MULTILINEAR ALGEBRA PROOF OF CAYLEY-HAMILTON THEOREM
    STONE, AP
    [J]. TENSOR, 1976, 30 (02): : 191 - 192
  • [4] CAYLEY-HAMILTON THEOREM
    MCCARTHY, CA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 390 - 391
  • [5] A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM
    CHICONE, C
    KALTON, NJ
    PAPICK, IJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02): : 134 - 136
  • [6] The quantum Cayley-Hamilton theorem
    Zhang, JJ
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (01) : 101 - 109
  • [7] A Generalization of the Cayley-Hamilton Theorem
    Chen, Lizhou
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (04): : 340 - 342
  • [8] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : L441 - L447
  • [9] ANOTHER PROOF OF 2-DIMENSIONAL CAYLEY-HAMILTON THEOREM
    VILFAN, B
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1973, C 22 (12) : 1140 - 1140
  • [10] NOTE ON THE CAYLEY-HAMILTON THEOREM
    GREENBERG, MJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (03): : 193 - 195