ON FLAG-TRANSITIVE AFFINE PLANES OF ORDER-Q(3)

被引:2
|
作者
SUETAKE, C [1 ]
机构
[1] AMAGASAKIMINAMI HIGH SCH,AMAGASAKI,HYOGO 660,JAPAN
关键词
Mathematics Subject Classification (1991): 51A40;
D O I
10.1007/BF01265324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a translation plane of order q3, q an odd prime power, whose kern superset-or-equal-to GF(q). Let l(infinity) be the line at infinity of pi. Let G be a solvable collineation group of pi in the linear translation complement, which acts transitively on l(infinity), and let H be maximal normal a cyclic subgroup of G. Then the restriction H of H on l(infinity) acts semiregularly on l(infinity) and \G:H\ is-an-element-of {1, 2, 3, 6}, where G is the restriction of G on l(infinity) (if q is not identically equal to -1 (mod 3), then \G:H\ is-an-element-of {1, 2}). If q is-an-element-of {3, 5} and \G:H\ is-an-element-of {1, 2}, then pi is determined completely, using a computer.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条