TRIVALENT LINEAR ALGEBRA BASED ON INTERVAL NUMBERS

被引:3
|
作者
JAHN, KU
机构
关键词
D O I
10.1002/mana.19750650108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [1] Covering Numbers in Linear Algebra
    Clark, Pete L.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (01): : 65 - 67
  • [2] Interval linear algebra-A new perspective
    Surya, S. Hema
    Nirmala, T.
    Ganesan, K.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2023, 35 (02)
  • [3] A novel linear algebra-based method for complex interval linear systems in circuit analysis
    Nejad, Maryam Farahmand
    Farahani, Hamed
    Nuraei, Rahele
    [J]. HELIYON, 2024, 10 (04)
  • [4] Linear algebra and numerical algorithms using dual numbers
    E. Pennestrì
    R. Stefanelli
    [J]. Multibody System Dynamics, 2007, 18 : 323 - 344
  • [5] Linear algebra and numerical algorithms using dual numbers
    Pennestri, E.
    Stefanelli, R.
    [J]. MULTIBODY SYSTEM DYNAMICS, 2007, 18 (03) : 323 - 344
  • [6] Incremental Interval Assignment by Integer Linear Algebra with Improvements
    Mitchell, Scott A.
    [J]. COMPUTER-AIDED DESIGN, 2023, 158
  • [7] Interval arithmetic and linear algebra over idempotent semirings
    Sobolevskii, AN
    [J]. DOKLADY AKADEMII NAUK, 1999, 369 (06) : 747 - 749
  • [8] A TRIVALENT LUKASIEWICZ ALGEBRA
    SADE, AJV
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (04): : 682 - &
  • [9] An Understandable Way to Extend the Ordinary Linear Order on Real Numbers to a Linear Order on Interval Numbers
    Yang, Jing
    Li, Shenggang
    Xu, Zeshui
    Liu, Heng
    Yao, Wei
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (09) : 2675 - 2688
  • [10] An Occlusion Calculus based on an Interval Algebra
    Santos, Paulo E.
    Ligozat, Gerard
    Safi-Samghabadi, Marjan
    [J]. 2015 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2015), 2015, : 128 - 133