Predictive intelligence to the edge: impact on edge analytics

被引:21
|
作者
Harth, Natascha [1 ]
Anagnostopoulos, Christos [1 ]
Pezaros, Dimitrios [1 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Edge analytics; Predictive intelligence; Evolving data streams; Communication efficiency; Context prediction; Exponential smoothing;
D O I
10.1007/s12530-017-9190-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We rest on the edge computing paradigm where pushing processing and inference to the edge of the Internet of Things (IoT) allows the complexity of predictive analytics to be distributed into smaller pieces physically located at the source of the contextual information. This enables a huge amount of rich contextual data to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud. We propose a lightweight, distributed, predictive intelligence mechanism that supports communication efficient aggregation and predictive modeling within the edge network. Our idea is based on the capability of the edge nodes to (1) monitor the evolution of the sensed time series contextual data, (2) locally determine (through prediction) whether to disseminate contextual data in the edge network or not, and (3) locally re-construct undelivered contextual data in light of minimizing the required communication interaction at the expense of accurate analytics tasks. Based on this on-line decision making, we eliminate data transfer at the edge of the network, thus saving network resources by exploiting the evolving nature of the captured contextual data. We provide comprehensive analytical, experimental and comparative evaluation of the proposed mechanism with other mechanisms found in the literature over real contextual datasets and show the benefits stemmed from its adoption in edge computing environments.
引用
收藏
页码:95 / 118
页数:24
相关论文
共 50 条
  • [1] Correction to: Predictive intelligence to the edge: impact on edge analytics
    Natascha Harth
    Christos Anagnostopoulos
    Dimitrios Pezaros
    [J]. Evolving Systems, 2018, 9 : 91 - 91
  • [2] Predictive intelligence to the edge: impact on edge analytics (vol 8, pg 1, 2017)
    Harth, Natascha
    Anagnostopoulos, Christos
    Pezaros, Dimitrios
    [J]. EVOLVING SYSTEMS, 2018, 9 (01) : 91 - 91
  • [3] Boosting Edge Intelligence With Collaborative Cross-Edge Analytics
    Jin, Hai
    Jia, Lin
    Zhou, Zhi
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04): : 2444 - 2458
  • [4] In-network Predictive Analytics in Edge Computing
    Nikolaou, Stefanos
    Anagnostopoulos, Christos
    Pezaros, Dimitrios
    [J]. 2019 WIRELESS DAYS (WD), 2019,
  • [5] Resilient edge predictive analytics by enhancing local models
    Wang, Qiyuan
    AlFahad, Saleh
    Fornes, Jordi Mateo
    Anagnostopoulos, Christos
    Kolomvatsos, Kostas
    [J]. OPEN COMPUTER SCIENCE, 2024, 14 (01):
  • [6] Quality-aware Aggregation & Predictive Analytics at the Edge
    Harth, Natascha
    Anagnostopoulos, Christos
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 17 - 26
  • [7] Bring your Machine Learning Intelligence to the Edge – An Example on Edge Analytics for Cement Strength Prediction
    Platenius-Mohr M.
    Schlake J.
    Vach M.
    Koorts R.
    [J]. VDI Berichte, 2022, 2022 (2399): : 413 - 424
  • [8] Leveraging Edge Intelligence for Video Analytics in Smart City Applications
    Rocha Neto, Aluizio
    Silva, Thiago P.
    Batista, Thais
    Delicato, Flavia C.
    Pires, Paulo F.
    Lopes, Frederico
    [J]. INFORMATION, 2021, 12 (01) : 1 - 26
  • [9] Edge Intelligence: Empowering Intelligence to the Edge of Network
    Xu, Dianlei
    Li, Tong
    Li, Yong
    Su, Xiang
    Tarkoma, Sasu
    Jiang, Tao
    Crowcroft, Jon
    Hui, Pan
    [J]. PROCEEDINGS OF THE IEEE, 2021, 109 (11) : 1778 - 1837
  • [10] Local & Federated Learning at the network edge for efficient predictive analytics
    Harth, Natascha
    Anagnostopoulos, Christos
    Voegel, Hans-Joerg
    Kolomvatsos, Kostas
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 134 : 107 - 122