CIRCUIT-SIZE LOWER BOUNDS AND NON-REDUCIBILITY TO SPARSE SETS

被引:95
|
作者
KANNAN, R
机构
来源
INFORMATION AND CONTROL | 1982年 / 55卷 / 1-3期
关键词
D O I
10.1016/S0019-9958(82)90382-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:40 / 56
页数:17
相关论文
共 30 条
  • [1] Sparse selfreducible sets and polynomial size circuit lower bounds
    Buhrman, H
    Torenvliet, L
    Unger, F
    [J]. STACS 2006, PROCEEDINGS, 2006, 3884 : 455 - 468
  • [2] ON CONSTRUCTIVELY NON-MORPHISMS OF ENUMERATED SETS AND CONSTRUCTIVE NON-REDUCIBILITY OF ENUMERATIONS
    ORLICKI, A
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (06): : 485 - 496
  • [3] Sparse Selfreducible Sets and Nonuniform Lower Bounds
    Buhrman, Harry
    Torenvliet, Leen
    Unger, Falk
    Vereshchagin, Nikolay
    [J]. ALGORITHMICA, 2019, 81 (01) : 179 - 200
  • [4] Sparse Selfreducible Sets and Nonuniform Lower Bounds
    Harry Buhrman
    Leen Torenvliet
    Falk Unger
    Nikolay Vereshchagin
    [J]. Algorithmica, 2019, 81 : 179 - 200
  • [5] Lower bounds on the size of test data sets
    Menzies, T
    Waugh, S
    [J]. ADVANCED TOPICS IN ARTIFICIAL INTELLIGENCE, 1998, 1502 : 227 - 237
  • [6] Hardness of Sparse Sets and Minimal Circuit Size Problem
    Fu, Bin
    [J]. COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 484 - 495
  • [7] Gate elimination: Circuit size lower bounds and #SAT upper bounds
    Golovnev, Alexander
    Kulikov, Alexander S.
    Smal, Alexander V.
    Tamaki, Suguru
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 719 : 46 - 63
  • [8] Upper and lower bounds on the size of Bk[g] sets
    Johnston, Griffin
    Tait, Michael
    Timmons, Craig
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 83 : 129 - 140
  • [9] Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size
    Arvind, V.
    Mukhopadhyay, Partha
    [J]. APPROXIMATION RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2008, 5171 : 276 - 289
  • [10] Lower Bounds for the Circuit Size of Partially Homogeneous Polynomials
    Lê H.V.
    [J]. Journal of Mathematical Sciences, 2017, 225 (4) : 639 - 657