PARAMETRIC CONTROL OF OSCILLATIONS AND ROTATIONS OF A COMPOUND PENDULUM (A SWING)

被引:0
|
作者
AKULENKO, LD
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parametric control of plane oscillations and rotations of a rigid body (a plane compound pendulum) is considered. The control is achieved by rectilinear displacements of a point mass with controlled velocity attached to the rigid body. A mathematical model is constructed and control and optimization problems are posed. An approximate asymptotic approach, based on a combination of the averaging method and the maximum principle, is proposed and applied. Rational control rules arc constructed and the evolution of the system is analysed. The limiting cases of small oscillations and rapid pendulum rotations are studied.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [1] A Study on Swing up Control for Rotation of Parametric Pendulum
    Yokoi, Yuichi
    Hikihara, T.
    [J]. IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 397 - 405
  • [2] Oscillations of a pendulum with a periodically varying length and a model of swing
    Pinsky, MA
    Zevin, AA
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (01) : 105 - 109
  • [3] ON OSCILLATIONS OF A PENDULUM OF A VARIABLE LENGTH AND A PENDULUM UNDER PARAMETRIC EXCITATION
    BHONSLE, BR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1966, 36 : 924 - &
  • [4] Modeling and Control for Swing and Anti-swing of a Wind Pendulum
    Long, Yue
    Xiao, Jin
    Zhang, Tian
    Cheng, Hao
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 1978 - 1983
  • [5] BIFURCATION CONTROL OF A PARAMETRIC PENDULUM
    De Paula, Aline S.
    Savi, Marcelo A.
    Wiercigroch, Marian
    Pavlovskaia, Ekaterina
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (05):
  • [6] On Control of Motion of a Parametric Pendulum
    Bezglasnyi, S. P.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (01): : 67 - 73
  • [7] Position and swing control of a pneumatic pendulum system
    Petropoulos, J
    Manesis, S
    Tzes, A
    Nikolakopoulos, G
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), VOLS. 1- 3, 2004, : 1307 - 1312
  • [8] Rotations of the Parametric Pendulum Excited by a Reciprocating Motion with a View on Energy Harvesting
    Dotti, Franco E.
    Reguera, Florencia
    Machado, Sebastian P.
    [J]. PROCEEDINGS OF DINAME 2017, 2019, : 385 - 397
  • [9] Pendulum Swing
    Hacker, Andrew
    [J]. NEW YORK REVIEW OF BOOKS, 2011, 58 (13) : 78 - 80
  • [10] SWING OF PENDULUM
    CAMERON, DE
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 1961, 85 (10) : 604 - &