We consider pairs (K,G) of an infinite field K or a formally real field K and a group G and want to find extension fields F of K with automorphism group G. If K is formally real then we also want F to be formally real and G must be right orderable. Besides showing the existence of the desired extension fields F, we are mainly interested in the question about the smallest possible size of such fields. From some combinatorial tools, like Shelah's Black Box, we inherit jumps in cardinalities of K and F respectively. For this reason we apply different methods in constructing fields F: We use a recent theorem on realizations of group rings as endomorphism rings in the category of free modules with distinguished submodules. Fortunately this theorem remains valid without cardinal jumps. In our main result (Theorem 1) we will show that for a large class of fields the desired result holds for extension fields of equal cardinality.