THE GAUSS-LUCAS THEOREM AND JENSEN POLYNOMIALS

被引:0
|
作者
CRAVEN, T
CSORDAS, G
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:415 / 429
页数:15
相关论文
共 50 条
  • [1] GAUSS-LUCAS TYPE THEOREM ON TRIGONOMETRIC POLYNOMIALS
    GENCHEV, TG
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1975, 28 (04): : 449 - 451
  • [2] The Gauss-Lucas Theorem for Regular Quaternionic Polynomials
    Vlacci, Fabio
    HYPERCOMPLEX ANALYSIS AND APPLICATIONS, 2011, : 275 - 282
  • [3] Generalization of the Gauss-Lucas theorem for bicomplex polynomials
    Bidkham, Mahmood
    Ahmadi, Sara
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (06) : 1618 - 1627
  • [4] A quantitative Gauss-Lucas theorem
    Totik, Vilmos
    ARKIV FOR MATEMATIK, 2022, 60 (01): : 195 - 212
  • [5] An extension of the theorem of Gauss-Lucas
    Gontcharoff, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1942, 36 : 39 - 41
  • [6] A generalization of the Gauss-Lucas theorem
    Diaz-Barrero, J. L.
    Egozcue, J. J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) : 481 - 486
  • [7] A Converse of the Gauss-Lucas Theorem
    Nikolov, Nikolai
    Sendov, Blagovest
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (06): : 541 - 544
  • [8] A refinement of the Gauss-Lucas Theorem
    Dimitrov, DK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 2065 - 2070
  • [9] A generalization of the Gauss-Lucas theorem
    J. L. Díaz-Barrero
    J. J. Egozcue
    Czechoslovak Mathematical Journal, 2008, 58 : 481 - 486
  • [10] The quaternionic Gauss-Lucas theorem
    Ghiloni, R.
    Perotti, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1679 - 1686