ON THE AREA OF A POLYGON INSCRIBED IN A CIRCLE

被引:0
|
作者
Matsumoto, Y. [1 ]
Matsutani, Y. [2 ]
Oda, M. [3 ]
Sakai, T. [4 ]
Shibuya, T. [5 ]
机构
[1] Gakushuin Univ, Fac Sci, Dept Matemat, Toshima Ku, 1-5-1 Mejiro, Tokyo, 1718588, Japan
[2] 3-21-1 Minamimachi, Kokubunji, Tokyo 1850021, Japan
[3] Tsuda Coll, Kodaira, Tokyo 1878577, Japan
[4] Nihon Univ, Coll Humanities & Sci, Dept Math, Setagaya Ku, Tokyo, 1560045, Japan
[5] 2-19-22-301 Nishiwaseda, Tokyo, 1690051, Japan
来源
ENSEIGNEMENT MATHEMATIQUE | 2007年 / 53卷 / 1-2期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if n >= 5, the area of the general cyclic n-gon cannot be calculated from its side lengths, using only arithmetic operations and k-th roots. To prove this, we apply Galois theory.
引用
收藏
页码:127 / 153
页数:27
相关论文
共 50 条
  • [1] Maximizing the area of an axially symmetric polygon inscribed in a simple polygon
    Barequet, Gill
    Rogol, Vadim
    [J]. COMPUTERS & GRAPHICS-UK, 2007, 31 (01): : 127 - 136
  • [2] Maximum area of inscribed polygon with constant perimeter
    Shu, Yangchun
    [J]. Wuhan Gangtie Xueyuan Xuebao/Journal of Wuhan Iron and Steel University, 2000, 23 (01): : 105 - 107
  • [3] PLANE-CURVES WITH A MOBILE CLOSED POLYGON INSCRIBED IN A CIRCLE
    WUNDERLICH, W
    [J]. ARCHIV DER MATHEMATIK, 1982, 38 (01) : 18 - 25
  • [4] With Random Parametric Equation of Circle Inscribed Polygon Generation Algorithm and Analysis
    Sun, Yanhai
    Song, Laizhong
    Shen, Tao
    [J]. APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 : 2506 - 2510
  • [5] Triangles inscribed in a circle
    Zhou, L
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (04): : 369 - 370
  • [6] Hexagon Inscribed in Circle
    Geupel, Oliver
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (06): : 559 - 559
  • [7] INSCRIBED REGULAR POLYGON OF 13 SIDES
    GOLDBERG, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (06): : 720 - &
  • [8] On the Average Perimeter of the Inscribed Random Polygon
    Ya.Yu. Nikitin
    T. A. Polevaya
    [J]. Vestnik St. Petersburg University, Mathematics, 2020, 53 : 58 - 63
  • [9] On the Average Perimeter of the Inscribed Random Polygon
    Nikitin, Ya. Yu.
    Polevaya, T. A.
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2020, 53 (01) : 58 - 63
  • [10] AREAS OF POLYGONS INSCRIBED IN A CIRCLE
    ROBBINS, DP
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 12 (02) : 223 - 236