We describe an extension of the method of Myers et al. (1982) to measure with high precision the uniformity of contractile motions that occur between sarcomeres in the isolated cardiac muscle cell (guinea pig and rat). The image of the striations, observed with modulation contrast microscopy, was detected by a linear array of photodiodes. Sarcomere length was measured > 500/s from the frequency of the array's video signal at two selectable regions of the cell. A precision test grating demonstrated that method resolves known differences in the spacing between two contiguous striations to +/- 0.01-mu-m and that the effects of image translation and microscopic resolution are minor. The distribution of striation spacing appears to be discrete in isolated segments of the cell, and patches of fairly uniform length can be identified that are laterally contiguous. When electrically triggered, contraction is synchronous and the sarcomeres shorten and relengthen smoothly. The contrast between the striations is transiently enhanced during relengthening, an indication that the contracting cell can not be treated as a simple grating. Pauses that occur during late in relengthening (and transient contractile alternans) are characterized by very synchronized activity. These forms of irregular contractile behavior are not explained by desynchronization of a mechanism of release of intracellular calcium. A companion article describes application of the technique to study the nonuniform motions that occur between sarcomeres (Krueger, Denton, and Siciliano, Biophysical Journal, 61:145-160, companion manuscript).