PLANE WAVE AND FUNDAMENTAL SOLUTION IN THERMOPOROELASTIC MEDIUM

被引:2
|
作者
Kumar, R. [1 ]
Kumar, S. [2 ]
Gourla, M. G. [3 ]
机构
[1] Kurukshetra Univ, Dept Math, Kurukshetra, Haryana, India
[2] Govt Degree Coll Chowari Chamba, Dept Math, Chowari, Himachal Prades, India
[3] Himachal Pradesh Univ, Dept Math, Shimla 171005, India
来源
MATERIALS PHYSICS AND MECHANICS | 2018年 / 35卷 / 01期
关键词
plane wave; fundamental solution; thermoporoelastic medium; steady oscillations;
D O I
10.18720/MPM.3512018_13
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present article deals with the study of propagation of plane wave and fundamental solution in the thermoporoelastic medium. It is found that for two dimensional model, their exist three longitudinal waves, namely P-1-wave, P-2-wave and T-wave in addition to transverse wave. Characteristics of waves like phase velocity, attenuation coefficient, specific loss and penetration depth are computed numerically and depicted graphically. The representation of the fundamental solution of the system of equations in the thermoporoelastic medium in case of steady oscillations is considered in term of elementary functions. Some basic properties of the fundamental solution are established. Some special cases are also deduced.
引用
收藏
页码:101 / 114
页数:14
相关论文
共 50 条
  • [1] Fundamental and plane wave solution in swelling porous medium
    Kumar R.
    Taneja D.
    Kumar K.
    Afrika Matematika, 2014, 25 (2) : 397 - 410
  • [2] Plane wave and fundamental solution in steady oscillation in swelling porous thermoelastic medium
    Kumar, Rajneesh
    Batra, Divya
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [3] Propagation of Plane Waves and Fundamental Solution in Thermoviscoelastic Medium with Voids
    Sharma, Kunal
    Kumar, Punit
    JOURNAL OF THERMAL STRESSES, 2013, 36 (02) : 94 - 111
  • [4] Plane wave propagation and fundamental solution in non-local couple stress micropolar thermoelastic solid medium with voids
    Poonam
    Sahrawat, Ravinder Kumar
    Kumar, Krishan
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021,
  • [5] FUNDAMENTAL 2-SCALE SOLUTION FOR A WAVE PROPAGATING IN A RANDOM MEDIUM
    GOZANI, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (13): : P110 - P110
  • [6] The hybrid solution for the Fundamental Plane
    D'Onofrio, M.
    Fasano, G.
    Moretti, A.
    Marziani, P.
    Bindoni, D.
    Fritz, J.
    Varela, J.
    Bettoni, D.
    Cava, A.
    Poggianti, B.
    Gullieuszik, M.
    Kjaergaard, P.
    Moles, M.
    Vulcani, B.
    Omizzolo, A.
    Couch, W. J.
    Dressler, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (01) : 45 - 63
  • [7] MATHEMATICAL MODEL OF DESTRUCTION OF A THERMOPOROELASTIC MEDIUM
    Meretin, A. S.
    Savenkov, E. B.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2021, 94 (02) : 365 - 376
  • [8] Mathematical Model of Destruction of a Thermoporoelastic Medium
    A. S. Meretin
    E. B. Savenkov
    Journal of Engineering Physics and Thermophysics, 2021, 94 : 365 - 376
  • [9] Solution of thermoporoelastic problems using FLAC
    Berchenko, I
    Detournay, C
    Detournay, E
    FLAC AND NUMERICAL MODELING IN GEOMECHANICS, 1999, : 133 - 140
  • [10] SOLUTIONS FOR CYLINDRICAL CAVITY IN SATURATED THERMOPOROELASTIC MEDIUM
    Bing Bai Tao Li (School of Civil Engineering
    Acta Mechanica Solida Sinica, 2009, 22 (01) : 85 - 94