ON WEAK ARMENDARIZ IDEALS

被引:1
|
作者
Hashemi, Ebrahim [1 ]
机构
[1] Shahrood Univ Technol, Dept Math, POB 316-3619995161, Shahrood, Iran
来源
关键词
Armendariz rings; weak Armendariz rings; semicommutative rings; weakly semicommutative rings;
D O I
10.4134/CKMS.2008.23.3.333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce weak Armendariz ideals which are a generalization of ideals have the weakly insertion of factors property (or simply weakly IFP) and investigate their properties. Moreover, we prove that, if I is a weak Armendariz ideal of R, then I[x] is a weak Armendariz ideal of R[x]. As a consequence, we show that, R is weak Armendariz if and only if R[x] is a weak Armendariz ring. Also we obtain a generalization of [8] and [9].
引用
收藏
页码:333 / 342
页数:10
相关论文
共 50 条
  • [1] Weak (α, δ)-skew Armendariz ideals
    Farahani, A. R. Majdabadi
    Heydari, F.
    Tavallaee, H. A.
    Maghasedi, M.
    MATHEMATICAL SCIENCES, 2018, 12 (03) : 235 - 242
  • [2] Weak α-skew Armendariz ideals
    Tavallaee, H. A.
    Nikmehr, M. J.
    Pazoki, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 64 (03) : 456 - 469
  • [3] Weak α-skew Armendariz ideals
    H. A. Tavallaee
    M. J. Nikmehr
    M. Pazoki
    Ukrainian Mathematical Journal, 2012, 64 : 456 - 469
  • [4] ON ARMENDARIZ IDEALS
    Ghalandarzadeh, Sh.
    Javadi, H. Haj Seyyed
    Khoramdel, M.
    Fard, M. Shamsaddini
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) : 883 - 888
  • [5] On Near Armendariz Ideals
    Khalilnezhad, Kh
    Javadi, H. Haj Seyyed
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (02): : 353 - 357
  • [6] The Armendariz property on ideals
    Kwak, Tai Keun
    Lee, Yang
    Yun, Sang Jo
    JOURNAL OF ALGEBRA, 2012, 354 (01) : 121 - 135
  • [7] ON WEAK ARMENDARIZ RINGS
    Jeon, Young Cheol
    Kim, Hong Kee
    Lee, Yang
    Yoon, Junc Sook
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 135 - 146
  • [8] On weak Armendariz rings
    Liu, ZK
    Zhao, RY
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (07) : 2607 - 2616
  • [9] POLYNOMIAL RINGS OVER WEAK ARMENDARIZ RINGS NEED NOT BE WEAK ARMENDARIZ
    Chen, Weixing
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2528 - 2532
  • [10] PROPERTIES OF ARMENDARIZ RINGS AND WEAK ARMENDARIZ RINGS
    Jokanovic, Dusan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 131 - 137