BIFURCATIONS IN A PARAMETRICALLY EXCITED NONLINEAR OSCILLATOR

被引:26
|
作者
BAJAJ, AK
机构
关键词
D O I
10.1016/0020-7462(87)90048-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:47 / 59
页数:13
相关论文
共 50 条
  • [1] PREDICTION OF BIFURCATIONS IN A PARAMETRICALLY EXCITED DUFFING OSCILLATOR
    SANCHEZ, NE
    NAYFEH, AH
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1990, 25 (2-3) : 163 - 176
  • [2] Bifurcations of a parametrically excited oscillator with strong nonlinearity
    Tang, JS
    Fu, WB
    Li, KA
    [J]. CHINESE PHYSICS, 2002, 11 (10): : 1004 - 1007
  • [3] Forecasting bifurcations in parametrically excited systems
    Chen, Shiyang
    Epureanu, Bogdan
    [J]. NONLINEAR DYNAMICS, 2018, 91 (01) : 443 - 457
  • [4] Forecasting bifurcations in parametrically excited systems
    Shiyang Chen
    Bogdan Epureanu
    [J]. Nonlinear Dynamics, 2018, 91 : 443 - 457
  • [5] Spatiotemporal bifurcations of a parametrically excited solitary wave
    Zhang, Likun
    Wang, Xinlong
    Tao, Zhiyong
    [J]. PHYSICAL REVIEW E, 2007, 75 (03):
  • [6] Symmetry breaking bifurcations of a parametrically excited pendulum
    B. P. Mann
    M. A. Koplow
    [J]. Nonlinear Dynamics, 2006, 46 : 427 - 437
  • [7] Symmetry breaking bifurcations of a parametrically excited pendulum
    Mann, B. P.
    Koplow, M. A.
    [J]. NONLINEAR DYNAMICS, 2006, 46 (04) : 427 - 437
  • [8] FLUCTUATIONS IN A PARAMETRICALLY EXCITED SUBHARMONIC OSCILLATOR
    WOO, JWF
    LANDAUER, R
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1971, QE 7 (09) : 435 - &
  • [9] Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam
    Zhang, W
    Wang, FX
    Yao, MH
    [J]. NONLINEAR DYNAMICS, 2005, 40 (03) : 251 - 279
  • [10] Global Bifurcations and Chaotic Dynamics in Nonlinear Nonplanar Oscillations of a Parametrically Excited Cantilever Beam
    Wei Zhang
    Fengxia Wang
    Minghui Yao
    [J]. Nonlinear Dynamics, 2005, 40 : 251 - 279