ON ISOSPECTRAL SPRING-MASS SYSTEMS

被引:23
|
作者
GLADWELL, GML
机构
[1] Fac. of Eng., Waterloo Univ., Ont.
关键词
D O I
10.1088/0266-5611/11/3/007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper concerns an in-line system of masses (mi()1)(n) connected to each other and to the end supports by ideal massless springs (k(i))(1)(n+1). Four ways are given for constructing a system which is isospectral to a given one: by using the interchange m(i) --> k(n-i+1)(-1), k(i) --> m(n-i+1)(-1) for a cantilever (k(n+1) = 0); by using the indeterminacy associated with the reduction to standard form; by using one or more shifted LL(T) factorizations and reversals; by using one or more shifted QR factorizations and reversals. It is shown that one may pass from any system to any isospectral system by a reduction to standard form, n - 1 QR factorizations and reversals, and a reversed reduction to standard form.
引用
收藏
页码:591 / 602
页数:12
相关论文
共 50 条
  • [1] Exploring isospectral spring-mass systems with firefly algorithm
    Department of Aerospace Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
    Proc. R. Soc. A Math. Phys. Eng. Sci., 2135 (3222-3240):
  • [2] Exploring isospectral spring-mass systems with firefly algorithm
    Dutta, Rajdeep
    Ganguli, Ranjan
    Mani, V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2135): : 3222 - 3240
  • [3] On Distributed Geolocation by Employing Spring-Mass Systems
    Grey, Michael
    Rossberg, Michael
    Backhaus, Martin
    Schaefer, Guenter
    2013 GLOBAL INFORMATION INFRASTRUCTURE SYMPOSIUM, 2013,
  • [4] SPRING-MASS CORRECTION
    PARKINSON, M
    AMERICAN JOURNAL OF PHYSICS, 1965, 33 (04) : 341 - +
  • [5] On the numerical modeling of poroelastic layers in spring-mass systems
    Lloret, Maria Gavila
    Mueller, Gregor
    Duvigneau, Fabian
    Gabbert, Ulrich
    APPLIED ACOUSTICS, 2020, 157
  • [6] Inverse eigenvalue problems associated with spring-mass systems
    Nylen, P
    Uhlig, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 254 : 409 - 425
  • [7] Inverse eigenvalue problem for a class of spring-mass systems
    Wan, Wenting
    Open Automation and Control Systems Journal, 2014, 6 (01): : 934 - 939
  • [8] Zero and root loci of disturbed spring-mass systems
    Lecomte, Christophe
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2164):
  • [9] SPRING-MASS SYSTEM FREQUENCIES
    PRETLOVE, AJ
    CME-CHARTERED MECHANICAL ENGINEER, 1982, 29 (09): : 22 - 22
  • [10] THE SPRING-MASS SYSTEM REVISITED
    CUSHING, JT
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (10) : 925 - 933