Apertium: a free/open-source platform for rule-based machine translation

被引:131
|
作者
Forcada, Mikel L. [1 ]
Ginesti-Rosell, Mireia [1 ]
Nordfalk, Jacob [2 ]
O'Regan, Jim [3 ]
Ortiz-Rojas, Sergio [4 ]
Antonio Perez-Ortiz, Juan [1 ]
Sanchez-Martinez, Felipe [1 ]
Ramirez-Sanchez, Gema [4 ]
Tyers, Francis M. [1 ]
机构
[1] Univ Alacant, Dept Llenguatges & Sistemes Informat, Grp Transducens, Alacant, Spain
[2] Univ Copenhagen, Coll Engn, Copenhagen, Denmark
[3] Eolaistriu Technol, Thurles, Ireland
[4] Prompsit Language Engn, Elche, Spain
关键词
Free/open-source machine translation; Rule-based machine translation; Apertium; Shallow transfer; Finite-state transducers;
D O I
10.1007/s10590-011-9090-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Apertium is a free/open-source platform for rule-based machine translation. It is being widely used to build machine translation systems for a variety of language pairs, especially in those cases (mainly with related-language pairs) where shallow transfer suffices to produce good quality translations, although it has also proven useful in assimilation scenarios with more distant pairs involved. This article summarises the Apertium platform: the translation engine, the encoding of linguistic data, and the tools developed around the platform. The present limitations of the platform and the challenges posed for the coming years are also discussed. Finally, evaluation results for some of the most active language pairs are presented. An appendix describes Apertium as a free/open-source project.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 50 条
  • [1] Recent advances in Apertium, a free/open-source rule-based machine translation platform for low-resource languages
    Khanna, Tanmai
    Washington, Jonathan N.
    Tyers, Francis M.
    Bayatli, Sevilay
    Swanson, Daniel G.
    Pirinen, Tommi A.
    Tang, Irene
    Font, Hector Alos i
    [J]. MACHINE TRANSLATION, 2021, 35 (04) : 475 - 502
  • [2] Sharing resources between free/open-source rule-based machine translation systems: Grammatical Framework and Apertium
    Detrez, Gregoire
    Sanchez-Cartagena, Victor M.
    Ranta, Aarne
    [J]. LREC 2014 - NINTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2014, : 4394 - 4400
  • [3] Matxin, an open-source rule-based machine translation system for Basque
    Mayor, Aingeru
    Alegria, Inaki
    de Ilarraza, Arantza Diaz
    Labaka, Gorka
    Lersundi, Mikel
    Sarasola, Kepa
    [J]. MACHINE TRANSLATION, 2011, 25 (01) : 53 - 82
  • [4] Free/open-source machine translation: preface
    Sanchez-Martinez, Felipe
    Forcada, Mikel L.
    [J]. MACHINE TRANSLATION, 2011, 25 (02) : 83 - 86
  • [5] Developing an open-source, rule-based proofreading tool
    Milkowski, Marcin
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 2010, 40 (07): : 543 - 566
  • [6] Deep open-source machine translation
    Bond, Francis
    Oepen, Stephan
    Nichols, Eric
    Flickinger, Dan
    Velldal, Erik
    Haugereid, Petter
    [J]. MACHINE TRANSLATION, 2011, 25 (02) : 87 - 105
  • [7] An Open Web Platform for Rule-Based Speech-to-Sign Translation
    Rayner, Manny
    Bouillon, Pierrette
    Gerlach, Johanna
    Strasly, Irene
    Tsourakis, Nikos
    Ebling, Sarah
    [J]. PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, : 162 - 168
  • [8] Apertium: automatic translation of open source for Romance languages
    Forcada, Mikel L.
    [J]. LINGUAMATICA, 2009, 1 (01): : 13 - 23
  • [9] pyStudio: An Open-Source Machine Learning Platform
    Gomicia-Murcia, Enrique
    Bordel Sanchez, Borja
    Souissi, Riad
    AL-Qurishi, Muhammad
    [J]. PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 436 - 440
  • [10] Improving Neural Machine Translation Using Rule-Based Machine Translation
    Singh, Muskaan
    Kumar, Ravinder
    Chana, Inderveer
    [J]. 2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 8 - 12