DEPENDENT ERROR REGRESSION SMOOTHING - A NEW METHOD AND PC PROGRAM

被引:3
|
作者
SCHIMEK, MG [1 ]
SCHMARANZ, KG [1 ]
机构
[1] GRAZ UNIV,SCH MED,MED BIOMETR GRP,A-8036 GRAZ,AUSTRIA
关键词
NONPARAMETRIC REGRESSION; BAND-LIMITED MATRIX; C++; CUBIC SMOOTHING SPLINES; CROSS-VALIDATION; DEPENDENT ERRORS; HAT MATRIX; MEMORY MANAGEMENT; PC IMPLEMENTATION; RESIDUALS; SERIAL CORRELATION; SMOOTHING PARAMETER; TIME SERIES; TRIANGULAR MATRIX; VARIANCE ESTIMATION; AUTOREGRESSIVE; MOVING AVERAGE; MS-WINDOWS;
D O I
10.1016/0167-9473(94)90024-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The problem of cubic spline smoothing of dependent data like time series and growth curves is addressed in this paper. Available statistical systems like S-PLUS (STATISTICAL SCIENCES, INC., 1991) and XploRe (XploRe SYSTEMS, 1992) do not provide appropriate algorithms. We propose a simple penalized least squares method with a number of computational advantages. It is called Dependent Error Regression Smoothing (abb. DERS) and implemented in a PC program under MS-Windows of the same name. The implementation comprises two techniques in an exploratory setting for smoothing parameter choice when the errors are serially correlated.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条