The release of the neuropeptide Met-enkephalin (Met-ENK) from isolated nerve terminals (synaptosomes) of the rat forebrain was characterized with respect to the subcellular distribution, the release upon addition of various stimulatory agents, the release kinetics, the cation-dependence of release and the relationship between Met-ENK release and elevations of the intraterminal free Ca2+-concentration ([Ca]i). A highly specific radioimmunoassay was developed for determination of Met-ENK (H-Tyr-Gly-Gly-Phe-Met-OH). Truncated and elongated forms of Met-ENK, Leu-enkephalin, beta-endorphin and dynorphin displayed negligible cross-reactivity. Met-ENK-like immunoreactivity (Met-ENK-LI) is enriched in the purified synaptosomal fraction of rat forebrain homogenates and is released in a strictly Ca2+-dependent manner upon chemical depolarization or stimulation with the Ca2+ ionophore, ionomycin. A correlation exists between the release of Met-ENK-LI and the elevations of [Ca]i. Barium ions are able to replace Ca2+ in triggering Met-ENK-LI release. The release of Met-ENK-LI is initiated within 20 s after depolarization and is terminated after 3-5 min, although depolarization and [Ca]i elevation are maintained. At this time, > 90% of the initial Met-ENK-LI is still present inside the synaptosomes. Repolarization and renewed stimulation again evokes Ca2+-dependent release of this retained Met-ENK-LI. It is concluded that Met-ENK release from isolated nerve terminals is exocytotic, and that exocytosis is terminated by a regulatory mechanism in synaptosomes after 3-5 min of depolarization, a process which can be reversed by repolarization. The characteristics of Met-ENK release are compared to those of other neuropeptides, of catecholamines and of amino acid transmitters, in similar preparations.