FULLY NONLINEAR PARABOLIC BOUNDARY-VALUE-PROBLEMS IN ONE SPACE DIMENSION .1.

被引:3
|
作者
LIN, CY [1 ]
机构
[1] TEXAS A&M UNIV SYST,DEPT MATH,COLLEGE STN,TX 77843
关键词
D O I
10.1016/0022-0396(90)90015-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Of concern is the parabolic equation ∂u ∂t(x,t) = F (x,u, ∂u ∂x, ∂2u ∂x2) for t > 0, x ε{lunate} [0, 1], and with the initial condition u(x, 0) = u0(x) and the nonlinear Robin boundary condition ( ∂u ∂x)(0, t) ε{lunate} β0(u(0, t)), ( -∂u dx)(1, t) ε{lunate} β1(u(1, t)). Here β0 and β1 are maximal monotone graphs in R × R with 0 ε{lunate} β0(0)∩β1(0). We solve it by using nonlinear semigroup theory in the space C[0, 1]. © 1990.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条