social networks;
disjoint paths;
fixed-parameter algorithms;
hardness of approximation;
D O I:
10.3390/a6010001
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The problem of finding the maximum number of vertex-disjoint uni-color paths in an edge-colored graph has been recently introduced in literature, motivated by applications in social network analysis. In this paper we investigate the approximation and parameterized complexity of the problem. First, we show that, for any constant epsilon > 0, the problem is not approximable within factor c(1-epsilon), where c is the number of colors, and that the corresponding decision problem is W[1]-hard when parametrized by the number of disjoint paths. Then, we present a fixed-parameter algorithm for the problem parameterized by the number and the length of the disjoint paths.
机构:
Univ Estado Rio De Janeiro, IME, Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
Faria, Luerbio
Klein, Sulamita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, IM, Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
Klein, Sulamita
Sau, Ignasi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Montpellier, LIRMM, CNRS, Montpellier, France
Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, BrazilUniv Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
Sau, Ignasi
Souza, Ueverton S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, IC, Niteroi, RJ, BrazilUniv Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
Souza, Ueverton S.
Sucupira, Rubens
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
Univ Fed Rio de Janeiro, COPPE, IM, Rio De Janeiro, BrazilUniv Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
机构:
IME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, BrazilIME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
Faria, Luerbio
Klein, Sulamita
论文数: 0引用数: 0
h-index: 0
机构:
IM, COPPE, Universidade Federal do Rio de janeiro, Rio de Janeiro, BrazilIME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
Klein, Sulamita
Sau, Ignasi
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, LIRMM, Université de Montpellier, Montpellier, France
Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, BrazilIME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
Sau, Ignasi
Souza, Uéverton S.
论文数: 0引用数: 0
h-index: 0
机构:
IC, Universidade Federal Fluminense, Niterói, BrazilIME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
Souza, Uéverton S.
Sucupira, Rubens
论文数: 0引用数: 0
h-index: 0
机构:
IME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
IM, COPPE, Universidade Federal do Rio de janeiro, Rio de Janeiro, BrazilIME, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil