REGULARITY OF SOLUTIONS OF THE NEUMANN PROBLEM FOR THE LAPLACE EQUATION

被引:0
|
作者
Medkova, Dagmar [1 ]
机构
[1] Acad Sci Czech Republ, Math Inst, Zitna 25, CR-11567 Prague 1, Czech Republic
来源
MATEMATICHE | 2006年 / 61卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let u be a solution of the Neumann problem for the Laplace equation in G with the boundary condition g. It is shown that u is an element of L-q(partial derivative G) (equivalently, u is an element of B-1/q(q,2) (G) for 1 < q <= 2, u is an element of L-1/q(q)(G) for 2 <= q < infinity) if and only if the single layer potential corresponding to the boundary condition g is in L-q(partial derivative G. As a consequence we give a regularity result for some nonlinear boundary value problem.
引用
收藏
页码:287 / 300
页数:14
相关论文
共 50 条