A NEW CHARACTERIZATION OF SPORADIC HIGMAN-SIMS AND HELD GROUPS

被引:0
|
作者
Yang, Y. [1 ]
Liu, S. [1 ]
机构
[1] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Sichuan, Peoples R China
来源
EURASIAN MATHEMATICAL JOURNAL | 2014年 / 5卷 / 03期
关键词
element order; sporadic Higman-Sims group; sporadic Held group; Thompson's problem; number of elements of the same order;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group and omega(G) be the set of element orders of G. Let k is an element of omega(G) and s(k) be the number of elements of order k in G. Let nse( G) = {s(k)vertical bar k is an element of omega (G)}. The projective special linear groups L-3(4) and L-3(5) are uniquely determined by nse. In this paper, we prove that if G is a group such that nse(G)= nse(M) where M is a sporadic Higman-Sims or Held group, then G congruent to M.
引用
收藏
页码:102 / 116
页数:15
相关论文
共 50 条