LUCAS-SIERPINSKI AND LUCAS-RIESEL NUMBERS

被引:0
|
作者
Baczkowski, Daniel [1 ]
Fasoranti, Olaolu [2 ]
Finch, Carrie E. [2 ]
机构
[1] Univ Findlay, Math Dept, Findlay, OH 45840 USA
[2] Washington & Lee Univ, Math Dept, Lexington, VA 24450 USA
来源
FIBONACCI QUARTERLY | 2011年 / 49卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that there are infinitely many Sierpinski numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.
引用
收藏
页码:334 / 339
页数:6
相关论文
共 50 条
  • [1] Polygonal, Sierpinski and Riesel numbers
    Baezkowski, Daniel
    Eimer, Justin
    Finchi, Carrie E.
    Suminski, Braedon
    Kozek, Mark
    [J]. JOURNAL OF INTEGER SEQUENCES, 2015, 18 (08)
  • [2] Nonlinear Sierpinski and Riesel numbers
    Finch, Carrie
    Harrington, Joshua
    Jones, Lenny
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (02) : 534 - 544
  • [3] On Cullen numbers which are both Riesel and Sierpinski numbers
    Berrizbeitia, Pedro
    Fernandes, J. G.
    Gonzalez, Marcos J.
    Luca, Florian
    Mejia Huguet, V. Janitzio
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 2836 - 2841
  • [4] δ-FIBONACCI AND δ-LUCAS NUMBERS, δ-FIBONACCI AND δ-LUCAS POLYNOMIALS
    Witula, Roman
    Hetmaniok, Edyta
    Slota, Damian
    Pleszczynski, Mariusz
    [J]. MATHEMATICA SLOVACA, 2017, 67 (01) : 51 - 70
  • [5] Fibonacci and Lucas Numbers of Factorials and Factorials of Fibonacci and Lucas
    Phunphayap, Phakhinkon
    Khemaratchatakumthorn, Tammatada
    Sumritnorrapong, Patcharee
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 11 - 19
  • [6] Verifying Sierpinski and Riesel Numbers in ACL2
    Cowles, John R.
    Gamboa, Ruben
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (70): : 20 - 27
  • [7] Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers
    Guo, Dongwei
    Chu, Wenchang
    [J]. MATHEMATICS, 2022, 10 (15)
  • [8] LUCAS TRIANGULAR NUMBERS
    GEORGHIOU, C
    [J]. FIBONACCI QUARTERLY, 1991, 29 (04): : 375 - 375
  • [9] An Identity For The Lucas Numbers
    Seiffert, H. -J.
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (01): : 92 - 92
  • [10] On the factorization of Lucas numbers
    McDaniel, WL
    [J]. FIBONACCI QUARTERLY, 2001, 39 (03): : 206 - 210