CHAOTIC SPECTRA OF CLASSICALLY INTEGRABLE SYSTEMS

被引:8
|
作者
CREHAN, P [1 ]
机构
[1] KYOTO UNIV,FAC SCI,DEPT MATH,KYOTO 606,JAPAN
来源
关键词
D O I
10.1088/0305-4470/28/22/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that any spectral sequence obeying a certain growth law is the quantum spectrum of an equivalence class of classically integrable nonlinear oscillators. This implies that exceptions to the Berry-Tabor rule for the distribution of quantum energy gaps of classically integrable systems, are far more numerous than previously believed. in particular, we show that for each finite dimension k, there are an infinite number of classically integrable k-dimensional nonlinear oscillators whose quantum spectrum reproduces the imaginary part of zeros on the critical line of the Riemann zeta function.
引用
收藏
页码:6389 / 6394
页数:6
相关论文
共 50 条
  • [1] EIGENSTATES AND SPECTRA OF CLASSICALLY CHAOTIC MOLECULES
    HELLER, EJ
    OCONNOR, PW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1990, 199 : 275 - PHYS
  • [2] On spectral statistics of classically integrable systems
    Robnik, M
    Veble, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (20): : 4669 - 4704
  • [3] THE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC SYSTEMS
    HELLER, EJ
    OCONNOR, PW
    GEHLEN, J
    PHYSICA SCRIPTA, 1989, 40 (03): : 354 - 359
  • [4] QUANTUM SPECTRA OF CLASSICALLY CHAOTIC SYSTEMS WITHOUT TIME-REVERSAL INVARIANCE
    SELIGMAN, TH
    VERBAARSCHOT, JJM
    PHYSICS LETTERS A, 1985, 108 (04) : 183 - 187
  • [5] Ehrenfest times for classically chaotic systems
    Silvestrov, PG
    Beenakker, CWJ
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 035208
  • [6] Study of spectral statistics of classically integrable systems
    Robnik, M
    Veble, G
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2000, (139): : 544 - 549
  • [7] QUANTUM SIMULATION OF CLASSICALLY CHAOTIC SYSTEMS
    PERES, A
    SCHULMAN, LS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (20): : 3893 - 3901
  • [8] SEMICLASSICAL QUANTIZATION OF CLASSICALLY CHAOTIC SYSTEMS
    KLAUDER, JR
    PHYSICAL REVIEW LETTERS, 1987, 59 (07) : 748 - 750
  • [9] Escape probability for classically chaotic systems
    Kokshenev, VB
    Nemes, MC
    PHYSICA A, 2000, 275 (1-2): : 70 - 77
  • [10] Spectral properties of classically chaotic systems
    Leyvraz, F
    LATIN-AMERICAN SCHOOL OF PHYSICS XXXI ELAF: NEW PERSPECTIVES ON QUANTUM MECHANICS, 1999, 464 : 253 - 280