BEAM-PLASMA NEUTRON SOURCES BASED ON BEAM-DRIVEN MIRROR

被引:13
|
作者
COENSGEN, FH [1 ]
CASPER, TA [1 ]
CORRELL, DL [1 ]
DAMM, CC [1 ]
FUTCH, AH [1 ]
LOGAN, BG [1 ]
MOLVIK, AW [1 ]
WALTER, CE [1 ]
机构
[1] UNIV CALIF LAWRENCE LIVERMORE NATL LAB,LIVERMORE,CA 94550
关键词
FUSION MATERIALS; MATERIALS DEVELOPMENT; NEUTRON DAMAGE; NEUTRON SOURCE;
D O I
10.1007/BF01051652
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The design and performance of a relatively low-cost, plasma-based, 14-MeV D-T neutron source for accelerated end-of-life testing of fusion reactor materials are described in this article. An intense flux (up to 5 X 10(18) n/m2.s) of 14-MeV neutrons is produced in a fully-ionized high-density tritium target (n(e) almost-equal-to 3 X 10(21) m-3) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D+ density produced by D0 injection are confined in a column of diameter less-than-or-equal-to 0.16 m by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is conducted along the plasma column to the end regions. Longitudinal plasma pressure in the column is balanced by neutral gas pressure in the end tanks. The target plasma temperature is about 200 eV at the beam-injection position and falls to 5 eV or less in the end region. Ions reach the walls with energies below the sputtering threshold, and the wall temperature is maintained below 740 K by conventional cooling technology.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 50 条
  • [1] Beam-Driven Growth of Lower Hybrid Wave in a Magnetized Relativistic Beam-Plasma System
    Gupta, Rajesh
    Sharma, Suresh C. C.
    Gupta, Ruby
    Gupta, Devki Nandan
    [J]. JOURNAL OF FUSION ENERGY, 2023, 42 (01)
  • [2] Beam-Driven Growth of Lower Hybrid Wave in a Magnetized Relativistic Beam-Plasma System
    Rajesh Gupta
    Suresh C. Sharma
    Ruby Gupta
    Devki Nandan Gupta
    [J]. Journal of Fusion Energy, 2023, 42
  • [3] Theory of a beam-driven plasma antenna
    Timofeev, I. V.
    Volchok, E. P.
    Annenkov, V. V.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (08)
  • [4] OPTIMIZATION OF NEUTRAL BEAM INJECTION IN THE BEAM-PLASMA NEUTRON SOURCE
    HOOPER, EB
    [J]. NUCLEAR FUSION, 1995, 35 (07) : 876 - 880
  • [5] Effect of plasma rotation on the beam-driven current
    Cottrell, G. A.
    Kemp, R.
    [J]. NUCLEAR FUSION, 2009, 49 (04)
  • [6] Stable witness-beam formation in a beam-driven plasma cathode
    Knetsch, A.
    Sheeran, B.
    Boulton, L.
    Niknejadi, P.
    Poder, K.
    Schaper, L.
    Zeng, M.
    Bohlen, S.
    Boyle, G.
    Brummer, T.
    Chappell, J.
    D'Arcy, R.
    Diederichs, S.
    Foster, B.
    Garland, M. J.
    Caminal, P. Gonzalez
    Hidding, B.
    Libov, V.
    Lindstrom, C. A.
    de la Ossa, A. Martinez
    Meisel, M.
    Parikh, T.
    Schmidt, B.
    Schroder, S.
    Tauscher, G.
    Wesch, S.
    Winkler, P.
    Wood, J. C.
    Osterhoff, J.
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (10)
  • [7] HIGH-PERFORMANCE BEAM-PLASMA NEUTRON SOURCES FOR FUSION MATERIALS DEVELOPMENT
    COENSGEN, FH
    CASPER, TA
    CORRELL, DL
    DAMM, CC
    FUTCH, AH
    LOGAN, BG
    MOLVIK, AW
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1990, 106 (02) : 138 - 155
  • [8] BEAM-PLASMA INSTABILITIES IN A HELICAL-BEAM PRODUCED, MAGNETIC-MIRROR PLASMA
    SCANNELL, EP
    DOGGETT, WO
    EURY, JL
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1233 - 1233
  • [9] Simulations of a beam-driven plasma antenna in the regime of plasma transparency
    Timofeev, I. V.
    Berendeev, E. A.
    Dudnikova, G. I.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (09)
  • [10] Acceleration of positrons by electron beam-driven wakefields in a plasma
    Lotov, K. V.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (02)