ON THE WEIERSTRASS-STONE THEOREM

被引:22
|
作者
PROLLA, JB
机构
[1] Univ Campinas, Imecc, Dept Matemat, BR 13081 Campinas, SP
关键词
D O I
10.1006/jath.1994.1080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a compact Hausdorff space, and let E be a normed space over the reals. Let C(S; E) be the linear space of all E-valued continuous functions f on S with the uniform norm \\f\\ = sup{\\ f(t)\\; t epsilon S}. When E = R, the Weierstrass-Stone Theorem describes the uniform closure of a subalgebra of C(s;R). We extend this classical result in two ways: we admit vector-valued functions and describe the uniform closure of arbitrary subsets of c(S;E). The classical Weierstrass-Stone Theorem is obtained as a corollary, without Zorn's Lemma. (C) 1994 Academic Press, Inc.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 50 条