Canonical idempotents of multiplicity-free families of algebras

被引:5
|
作者
Doty, Stephen [1 ]
Lauve, Aaron [1 ]
Seelinger, George H. [2 ]
机构
[1] Loyola Univ, Dept Math & Stat, Chicago, IL 60660 USA
[2] Univ Virginia, Dept Math, POB 400137, Charlottesville, VA 22904 USA
来源
ENSEIGNEMENT MATHEMATIQUE | 2018年 / 64卷 / 1-2期
关键词
Group algebras; Brauer algebras; primitive idempotents; Jucys-Murphy elements; tower of algebras;
D O I
10.4171/LEM/64-1/2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any multiplicity-free family of finite dimensional algebras has a canonical complete set of pairwise orthogonal primitive idempotents in each level. We give various methods to compute these idempotents. In the case of symmetric group algebras over a field of characteristic zero, the set of canonical idempotents is precisely the set of seminormal idempotents constructed by Young. As an example, we calculate the canonical idempotents for semisimple Brauer algebras.
引用
收藏
页码:23 / 63
页数:41
相关论文
共 50 条