EFFICIENT ESTIMATION IN A NONLINEAR COUNTING-PROCESS REGRESSION-MODEL

被引:2
|
作者
GREENWOOD, PE
WEFELMEYER, W
机构
[1] UNIV BRITISH COLUMBIA,DEPT MATH,VANCOUVER V6T 1Y4,BC,CANADA
[2] UNIV COLOGNE,INST MATH,W-5000 COLOGNE 41,GERMANY
关键词
EFFICIENT ESTIMATION; PARTIALLY SPECIFIED MODEL; NONLINEAR REGRESSION;
D O I
10.2307/3315795
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose we observe i.i.d. copies of X,C,Y, where X is a counting process, C is a censoring process taking only values 0 and 1, and Y is a covariate process. Assume that the intensity process of X is of the form C(s)a(s,Y(s)) with a unknown, but that the distribution of X,C,Y is unspecified otherwise. McKeague and Utikal proposed an estimator for the doubly cumulative hazard integral-0/z integral-0/t a(s,y) ds dy and determined its asymptotic distribution. We show that the estimator is regular and efficient in the sense of a Hajek-Inagaki convolution theorem for partially specified models.
引用
收藏
页码:165 / 178
页数:14
相关论文
共 50 条