FRACTAL MODEL OF A ONE-DIMENSIONAL DISCRETE SIGNAL AND ITS IMPLEMENTATION

被引:7
|
作者
ZHU, X [1 ]
CHENG, B [1 ]
TITTERINGTON, DM [1 ]
机构
[1] UNIV KENT,INST MATH & STAT,CANTERBURY CT2 7NF,KENT,ENGLAND
来源
关键词
SIGNAL PROCESSING; IFS THEORY; SUBOPTIMAL SEARCH ALGORITHMS; FRACTAL INTERPOLATION; AFFINE TRANSFORMATION PARAMETERS;
D O I
10.1049/ip-vis:19941344
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An extended iterated-function-system (IFS) interpolation method is presented for modelling for a given discrete signal. To reduce the computing complexity a suboptimal search algorithm with a robust technique for estimating the IFS affine-map parameters is introduced. Simulation results show that the IFS approach achieves a higher signal-to-noise ratio than does an existing approach based on autoregressive modelling.
引用
收藏
页码:318 / 324
页数:7
相关论文
共 50 条
  • [1] One-dimensional fractal model of the sea surface
    Berizzi, F
    Dalle Mese, E
    Pinelli, G
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) : 55 - 64
  • [2] One-dimensional fractal photonic crystal and its characteristics
    Xu, Pan
    Tian, HuiPing
    Ji, YueFeng
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (04) : 640 - 647
  • [3] NONLINEAR ADDRESS MAPS IN A ONE-DIMENSIONAL FRACTAL MODEL
    VINES, G
    HAYES, MH
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (04) : 1721 - 1724
  • [4] One-dimensional discrete aggregation-fragmentation model
    Bunzarova, N. Zh
    Pesheva, N. C.
    Brankov, J. G.
    [J]. PHYSICAL REVIEW E, 2019, 100 (02)
  • [5] One-dimensional fractal curves and fractal dimension determination
    Univ of Science and Technology, Beijing, Beijing, China
    [J]. J Univ Sci Technol Beijing Eng Ed, 3 (165-168):
  • [6] One-Dimensional Fractal Curves and Fractal Dimension Determination
    Qikai Li
    Yue Zhang
    Wuyang Chu(Applied Science School
    [J]. International Journal of Minerals,Metallurgy and Materials, 1998, (03) : 165 - 168
  • [7] One-dimensional fractal curves and fractal dimension determination
    Li, QK
    Zhang, Y
    Chu, WY
    [J]. JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 1998, 5 (03): : 165 - 168
  • [8] ENHANCED DIFFUSION ON A ONE-DIMENSIONAL FRACTAL
    CHATTERJI, M
    DASGUPTA, R
    BALLABH, TK
    TARAFDAR, S
    [J]. PHYSICS LETTERS A, 1993, 179 (01) : 38 - 40
  • [9] One-dimensional discrete formulation of a hygrolock model for wood hygromechanics
    J. Colmars
    F. Dubois
    J. Gril
    [J]. Mechanics of Time-Dependent Materials, 2014, 18 : 309 - 328
  • [10] Integrable Discrete Model for One-Dimensional Soil Water Infiltration
    Triadis, Dimetre
    Broadbridge, Philip
    Kajiwara, Kenji
    Maruno, Ken-ichi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2018, 140 (04) : 483 - 507