首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
EXTENDED CENTROIDS OF POWER-SERIES RINGS
被引:2
|
作者
:
MARTINDALE, WS
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV MASSACHUSETTS,DEPT MATH,AMHERST,MA 01003
MARTINDALE, WS
ROSEN, MP
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV MASSACHUSETTS,DEPT MATH,AMHERST,MA 01003
ROSEN, MP
ROSEN, JD
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV MASSACHUSETTS,DEPT MATH,AMHERST,MA 01003
ROSEN, JD
机构
:
[1]
UNIV MASSACHUSETTS,DEPT MATH,AMHERST,MA 01003
[2]
CALIF STATE UNIV NORTHRIDGE,DEPT MATH,NORTHRIDGE,CA 91330
来源
:
GLASGOW MATHEMATICAL JOURNAL
|
1990年
/ 32卷
关键词
:
D O I
:
10.1017/S0017089500009459
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
Prime rings came into prominence when Posner characterized prime rings satisfying a polynomial identity [9]. The scarcity of invertible central elements made it difficult to generalize results from central simple and primitive algebras to prime rings. For example, we do not automatically have tensor products at our disposal. In [5], the first author introduced the Martindale ring of quotients Q(R) of a prime ring R in his theorem characterizing prime rings satisfying a generalized polynomial identity (GPI). Q(R) is a prime ring containing R whose center C is a field called the extended centroid of R. The central closure of R is the subring RC of Q(R) generated by R and C. RC is a closed prime ring since its extended centroid equals its center C. Hence we have a useful procedure for proving results about an arbitrary prime ring R. We first answer the question for closed prime rings and then apply to R the information obtained from RC. It should be noted that simple rings and free algebras of rank at least 2 are closed prime rings. For these reasons, closed prime rings are natural objects to study. © 1990, Glasgow Mathematical Journal Trust. All rights reserved.
引用
收藏
页码:371 / 375
页数:5
相关论文
共 50 条
[1]
SEMINORMALITY IN POWER-SERIES RINGS
BREWER, JW
论文数:
0
引用数:
0
h-index:
0
机构:
FLORIDA STATE UNIV,TALLAHASSEE,FL 32306
FLORIDA STATE UNIV,TALLAHASSEE,FL 32306
BREWER, JW
NICHOLS, WD
论文数:
0
引用数:
0
h-index:
0
机构:
FLORIDA STATE UNIV,TALLAHASSEE,FL 32306
FLORIDA STATE UNIV,TALLAHASSEE,FL 32306
NICHOLS, WD
JOURNAL OF ALGEBRA,
1983,
82
(01)
: 282
-
284
[2]
ISOMORPHIC POWER-SERIES RINGS
OMALLEY, MJ
论文数:
0
引用数:
0
h-index:
0
OMALLEY, MJ
PACIFIC JOURNAL OF MATHEMATICS,
1972,
41
(02)
: 503
-
&
[3]
ISOMORPHIC POWER-SERIES RINGS
OMALLEY, MJ
论文数:
0
引用数:
0
h-index:
0
OMALLEY, MJ
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY,
1972,
19
(01):
: A60
-
+
[4]
EMBEDDINGS INTO POWER-SERIES RINGS
REDFIELD, RH
论文数:
0
引用数:
0
h-index:
0
机构:
SIMON FRASER UNIV,BURNABY V5A 1S6,BC,CANADA
SIMON FRASER UNIV,BURNABY V5A 1S6,BC,CANADA
REDFIELD, RH
MANUSCRIPTA MATHEMATICA,
1986,
56
(03)
: 247
-
268
[5]
ON ISOMORPHISMS OF POWER-SERIES RINGS
KIM, JH
论文数:
0
引用数:
0
h-index:
0
KIM, JH
ARCHIV DER MATHEMATIK,
1981,
37
(04)
: 330
-
334
[6]
ON THE INTEGRAL DEPENDENCE OF POWER-SERIES RINGS
CHU, H
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Mathematics, National Taiwan University, Taipe
CHU, H
COMMUNICATIONS IN ALGEBRA,
1991,
19
(09)
: 2589
-
2602
[7]
ALGEBRAIC EXTENSIONS OF POWER-SERIES RINGS
ARNOLD, JT
论文数:
0
引用数:
0
h-index:
0
ARNOLD, JT
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY,
1981,
267
(01)
: 95
-
110
[8]
AUTOMORPHISMS OF RESTRICTED POWER-SERIES RINGS
SANKARAN, N
论文数:
0
引用数:
0
h-index:
0
机构:
PANJAB UNIV,CTR ADV STUDIES,DEPT MATH,CHANDIGARH 14,INDIA
PANJAB UNIV,CTR ADV STUDIES,DEPT MATH,CHANDIGARH 14,INDIA
SANKARAN, N
JOURNAL OF ALGEBRA,
1974,
32
(02)
: 400
-
404
[9]
2 COUNTEREXAMPLES IN POWER-SERIES RINGS
HAMANN, E
论文数:
0
引用数:
0
h-index:
0
机构:
ELMHURST COLL,ELMHURST,IL 60126
HAMANN, E
SWAN, RG
论文数:
0
引用数:
0
h-index:
0
机构:
ELMHURST COLL,ELMHURST,IL 60126
SWAN, RG
JOURNAL OF ALGEBRA,
1986,
100
(01)
: 260
-
264
[10]
NOETHERIAN SUBRINGS OF POWER-SERIES RINGS
WAN, DQ
论文数:
0
引用数:
0
h-index:
0
WAN, DQ
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,
1995,
123
(06)
: 1681
-
1686
←
1
2
3
4
5
→