MULTINOMIAL RESPONSE MODELS

被引:5
|
作者
ZELEN, M
机构
[1] HARVARD UNIV, SCH PUBL HLTH, BOSTON, MA 02115 USA
[2] HARVARD UNIV, SCH MED, DANA FARBER CANC INST, BOSTON, MA 02115 USA
关键词
D O I
10.1016/0167-9473(91)90023-U
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Consider a multinomial response model with (k + 1) outcomes and p explanatory variables. The general logistic model for the multinomial probabilities results in a matrix of sufficient statistics having kp elements. The means and variances of the sufficient statistics are derived (under the null hypothesis) and can be written as a Kronecker product. Since the sufficient statistics have asymptotic normal distributions, large sample tests can be derived which uses a chi-square statistic. The conditional test for testing if a single explanatory variable affects the response is derived.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条
  • [1] Multinomial Ordinal Response Models
    Klicnar, Martin
    Cincurova, Lenka
    [J]. MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 386 - 391
  • [2] Inference on semiparametric multinomial response models
    Khan, Shakeeb
    Ouyang, Fu
    Tamer, Elie
    [J]. QUANTITATIVE ECONOMICS, 2021, 12 (03) : 743 - 777
  • [3] Response shrinkage estimation in multinomial logit models
    Zahid, Faisal Maqbool
    Heumann, Christian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (01) : 95 - 109
  • [4] An application of multinomial response models using bayesian approach
    Cengiz, Mehmet Ali
    Terzi, Yuksel
    Savas, Nurettin
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2009, 12 (04): : 603 - 611
  • [5] ON THE PERFORMANCE OF FRACTIONAL MULTINOMIAL RESPONSE MODELS FOR ESTIMATING ENGEL CURVES
    Koch, Steven F.
    [J]. AGREKON, 2015, 54 (01) : 28 - 52
  • [6] Testing Models of Cognition and Action Using Response Conflict and Multinomial Processing Tree Models
    Miles, Andrew
    Brett, Gordon
    Khan, Salwa
    Samim, Yagana
    [J]. SOCIOLOGICAL SCIENCE, 2023, 10 : 118 - 149
  • [7] Residuals for multinomial models
    Seber, GAF
    Nyangoma, SO
    [J]. BIOMETRIKA, 2000, 87 (01) : 183 - 191
  • [8] Bias in multinomial models
    Nyangoma, SO
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (01) : 67 - 82
  • [9] A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models
    Iwasawa, Masamune
    [J]. ECONOMETRICS, 2015, 3 (03): : 667 - 697
  • [10] APPLICATIONS OF MULTINOMIAL DOSE-RESPONSE MODELS IN DEVELOPMENTAL TOXICITY RISK ASSESSMENT
    KREWSKI, D
    ZHU, Y
    [J]. RISK ANALYSIS, 1994, 14 (04) : 613 - 627