PRIME LEHMER AND LUCAS NUMBERS WITH COMPOSITE INDICES

被引:0
|
作者
Somer, Lawrence [1 ]
Krizek, Michal [2 ]
机构
[1] Catholic Univ Amer, Dept Math, Washington, DC 20064 USA
[2] Acad Sci, Inst Math, CZ-11567 Prague 1, Czech Republic
来源
FIBONACCI QUARTERLY | 2013年 / 51卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R(L, M) and U(P, Q) denote the Lehmer and Lucas sequences, respectively. It is shown that if R(L, M) and U(P, Q) are nondegenerate, then R-n (L, M) and U-n (P, Q) can be prime for composite n only if n epsilon {4, 6, 8, 9, 10, 14, 15, 21, 25, 26, 49, 65}. Moreover, all instances in which R-n (L, M) or U-m (P, Q) are prime are explicitly given when n E {14,15,21,26,49,65} and m epsilon {6,8,10,15,25,26,65}.
引用
收藏
页码:194 / 214
页数:21
相关论文
共 50 条
  • [1] On divisors of Lucas and Lehmer numbers
    Stewart, Cameron L.
    [J]. ACTA MATHEMATICA, 2013, 211 (02) : 291 - 314
  • [2] LUCAS NUMBERS WITH THE LEHMER PROPERTY
    Faye, Bernadette
    Luca, Florian
    [J]. MATHEMATICAL REPORTS, 2017, 19 (01): : 121 - 125
  • [3] DIVISORS OF FERMAT, FIBONACCI, LUCAS, AND LEHMER NUMBERS
    STEWART, CL
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 35 (NOV) : 425 - 447
  • [4] Existence of primitive divisors of Lucas and Lehmer numbers
    Bilu, Y
    Hanrot, G
    Voutier, PM
    Mignotte, M
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 539 : 75 - 122
  • [5] The ABC conjecture and prime divisors of the Lucas and Lehmer sequences
    Murty, R
    Wong, S
    [J]. NUMBER THEORY FOR THE MILLENNIUM III, 2002, : 43 - 54
  • [6] Lehmer numbers and primitive roots modulo a prime
    Cohen, Stephen D.
    Trudgian, Tim
    [J]. JOURNAL OF NUMBER THEORY, 2019, 203 : 68 - 79
  • [7] ON SOME ARITHMETICAL PROPERTIES OF LUCAS AND LEHMER-NUMBERS
    GYORY, K
    [J]. ACTA ARITHMETICA, 1982, 40 (04) : 369 - 373
  • [8] On certain prime numbers in Lucas sequences
    Athab, Ali S.
    Hashim, Hayder R.
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (06) : 1181 - 1192
  • [9] ON DIVISORS OF FERMAT, FIBONACCI, LUCAS AND LEHMER-NUMBERS .3.
    STEWART, CL
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (OCT): : 211 - 217
  • [10] ON DIVISORS OF FERMAT, FIBONACCI, LUCAS AND LEHMER-NUMBERS .2.
    SHOREY, TN
    STEWART, CL
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1981, 23 (FEB): : 17 - 23