On nonparametric estimation of the regression function under random censorship model

被引:28
|
作者
Guessoum, Zohra [1 ]
Ould-Said, Elias [2 ]
机构
[1] Univ Sci & Tech HB, Fac Math, El Alia 16111, Algeria
[2] Univ Littoral Cote dOpale, LMPAJ Liouville, F-62228 Calais, France
关键词
Asymptotic normality; censored data; Kaplan-Meier estimator; kernel; nonparametric regression; rate of convergence; strong consistency;
D O I
10.1524/stnd.2008.0919
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the behavior of a kernel estimator for the regression function in a random right-censoring model. We establish pointwise and uniform strong consistency over a compact set and give a rate of convergence for the estimate. The asymptotic normality of the estimate is also proved. Simulations are drawn for different cases to illustrate both, convergence and asymptotic normality.
引用
收藏
页码:159 / 177
页数:19
相关论文
共 50 条