A GENERALIZED VARIATIONAL PRINCIPLE IN b-METRIC SPACES

被引:1
|
作者
Farkas, Csaba [1 ,2 ]
Molnar, Andrea Eva [1 ]
Nagy, Szilard [3 ]
机构
[1] Babes Bolyai Univ, Dept Math, 1 Kogalniceanu Str, Cluj Napoca 400084, Romania
[2] Sapientia Hungarian Univ Transylvania, Fac Tech & Human Sci, Dept Math & Informat, Targu Mures, Romania
[3] Babes Bolyai Univ, Dept Econ, Cluj Napoca 400596, Romania
来源
MATEMATICHE | 2014年 / 69卷 / 02期
关键词
b-metric; Ekeland-type variational principles; Zhong-type variational principles; Caristi's fixed point theorem;
D O I
10.4418/2014.69.2.18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish and prove a generalized variational principle for b-metric spaces. As a consequence, we obtain a weak Zhong-type variational principle in b-metric spaces. We show the applicability of the mentioned generalized variational principle by presenting a Caristi-type fixed point theorem and an extension of the main result for bifunctions both of them stated in b-metric spaces.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 50 条
  • [1] ON EKELAND'S VARIATIONAL PRINCIPLE IN b-METRIC SPACES
    Bota, Monica
    Molnar, Andrea
    Varga, Csaba
    [J]. FIXED POINT THEORY, 2011, 12 (01): : 21 - 28
  • [2] On generalized α - ψ-Geraghty contractions on b-metric spaces
    Afshari, Hojjat
    Aydi, Hassen
    Karapinar, Erdal
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (01) : 9 - 21
  • [3] The generalized Banach contraction conjecture in b-metric spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    [J]. Journal of Fixed Point Theory and Applications, 2018, 20
  • [4] FIXED POINTS FOR GENERALIZED α-ψ-CONTRACTIONS IN b-METRIC SPACES
    Ozturk, Vildan
    Turkoglu, Duran
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (10) : 2059 - 2066
  • [5] The generalized Banach contraction conjecture in b-metric spaces
    Nguyen Van Dung
    Vo Thi Le Hang
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [6] THE COMPLETION OF GENERALIZED B-METRIC SPACES AND FIXED POINTS
    Cobzas, Stefan
    Czerwik, Stefan
    [J]. FIXED POINT THEORY, 2020, 21 (01): : 133 - 150
  • [7] Fixed point theorems on generalized b-metric spaces
    Petre, Ioan-Radu
    Bota, Monica
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (1-2): : 139 - 159
  • [8] Generalized Iterated Function Systems on b-Metric Spaces
    Abraham, Izabella
    Miculescu, Radu
    [J]. MATHEMATICS, 2023, 11 (13)
  • [9] GENERALIZED CONE b-METRIC SPACES AND CONTRACTION PRINCIPLES
    George, Reny
    Nabwey, Hossam A.
    Reshma, K. P.
    Rajagopalan, R.
    [J]. MATEMATICKI VESNIK, 2015, 67 (04): : 246 - 257
  • [10] Some Equivalences between Cone b-Metric Spaces and b-Metric Spaces
    Kumam, Poom
    Nguyen Van Dung
    Vo Thi Le Hang
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,