Dynamics in a periodic two-species predator-prey system with pure delays

被引:4
|
作者
Mahemuti, Rouzimaimaiti [1 ]
Muhammadhaji, Ahmadjan [1 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国国家自然科学基金;
关键词
Lotka-Volterra predator-prey system; Discrete time delay; Liapunov functional; Global attractivity; Positive periodic solution;
D O I
10.1007/s40096-014-0130-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of non-autonomous two-species Lotka-Volterra predator-prey system with pure discrete time delays is discussed. Some sufficient conditions on the boundedness, permanence, extinction, positive periodic solution and global attractivity of the system are established by means of the comparison method, coincidence degree theory and Liapunov functional.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] Predator-prey relationships in a two-species toxicity test system
    Hamers, T
    Krogh, PH
    [J]. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 1997, 37 (03) : 203 - 212
  • [2] On a periodic predator-prey system with time delays
    Zhao Chang-jian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) : 978 - 985
  • [3] Dynamics of a predator-prey system with stage structure and two delays
    Liu, Juan
    Zhang, Zizhen
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3074 - 3089
  • [5] Persistence and stability of a two-species predator-prey system with time delay
    Liu, QM
    Xu, R
    Feng, HY
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2005, 12 (06): : 783 - 793
  • [6] Analytical Results of a Two-Species Predator-Prey Model
    KE Jian-Hong~(1
    [J]. Communications in Theoretical Physics, 2008, 49 (03) : 791 - 796
  • [7] Analytical results of a two-species predator-prey model
    Ke Jian-Hong
    Lin Zhen-Quan
    Chen Xiao-Shuang
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (03) : 791 - 796
  • [8] Global attractivity in a predator-prey system with pure delays
    Tang, X. H.
    Zou, Xingfu
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 495 - 508
  • [9] On a periodic predator-prey system with nonlinear diffusion and delays
    Muhammadhaji A.
    Mahemuti R.
    Teng Z.
    [J]. Afrika Matematika, 2016, 27 (7-8) : 1179 - 1197
  • [10] Bifurcations for a predator-prey system with two delays
    Song, Yongli
    Peng, Yahong
    Wei, Junjie
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 466 - 479