ATOMIC HUMAN ACTION SEGMENTATION AND RECOGNITION USING A SPATIO-TEMPORAL PROBABILISTIC FRAMEWORK

被引:0
|
作者
Chen, Duan-Yu [1 ]
Liao, Hong-Yuan Mark [1 ]
Shih, Sheng-Wen [2 ]
机构
[1] Acad Sinica, Inst Informat Sci, 128 Sect 2,Acad Rd, Taipei, Taiwan
[2] Natl Chi Nan Univ, Dept Comp Sci & Informat Engn, Puli, Nantou Hsien, Taiwan
关键词
Atomic action segmentation; human action recognition;
D O I
10.1142/S1793351X07000111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a framework of automatic human action segmentation and recognition in continuous action sequences is proposed. A star figure enclosed by a bounding convex polygon is used to effectively represent the extremities of the silhouette of a human body. The human action, thus, is recorded as a sequence of the star-figure's parameters, which is used for action modeling. To model human actions in a compact manner while characterizing their spatio-temporal distributions, the star-figure's parameters are represented by Gaussian mixture models ( GMM). In addition, to address the intrinsic nature of temporal variations in a continuous action sequence, we transform the time sequence of star-like figure parameters into frequency domain by discrete cosine transform (DCT) and use only the first few coefficients to represent different temporal patterns with significant discriminating power. The performance shows that the proposed framework can recognize continuous human actions in an efficient way.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 50 条
  • [1] Continuous human action segmentation and recognition using a spatio-temporal probabilistic framework
    Chen, Duan-Yu
    Liao, Hong-Yuan Mark
    Shih, Sheng-Wen
    [J]. ISM 2006: EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, PROCEEDINGS, 2006, : 275 - +
  • [2] Atomic human action segmentation using a spatio-temporal Pprobabilistic framework
    Chen, Duan-Yu
    Shih, Sheng-Wen
    Liao, Hong-Yuan Mark
    [J]. IIH-MSP: 2006 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2006, : 327 - 330
  • [3] Human Action Recognition Using Spatio-temporal Classification
    Fang, Chin-Hsien
    Chen, Ju-Chin
    Tseng, Chien-Chung
    Lien, Jenn-Jier James
    [J]. COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 98 - 109
  • [4] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [5] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    [J]. EURASIP Journal on Image and Video Processing, 2016
  • [6] Human Action Recognition using Factorized Spatio-Temporal Convolutional Networks
    Sun, Lin
    Jia, Kui
    Yeung, Dit-Yan
    Shi, Bertram E.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4597 - 4605
  • [7] Human action recognition using Local Spatio-Temporal Discriminant Embedding
    Jia, Kui
    Yeung, Dit-Yan
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 3040 - +
  • [8] Spatio-Temporal Steerable Pyramid for Human Action Recognition
    Zhen, Xiantong
    Shao, Ling
    [J]. 2013 10TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), 2013,
  • [9] Spatio-temporal Video Autoencoder for Human Action Recognition
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    [J]. PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 114 - 123
  • [10] Spatio-temporal Semantic Features for Human Action Recognition
    Liu, Jia
    Wang, Xiaonian
    Li, Tianyu
    Yang, Jie
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2012, 6 (10): : 2632 - 2649