The energy of the Mycielskian of a regular graph

被引:0
|
作者
Balakrishnan, R. [1 ]
Kavaskar, T. [2 ]
So, Wasin [3 ]
机构
[1] Bharathidasan Univ, Dept Math, Tiruchirappalli 620024, Tamil Nadu, India
[2] SASTRA Univ, SRC, Dept Math, Kumbakonam 612001, India
[3] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2012年 / 52卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite connected simple graph and mu(G) be the Mycielskian of G. We show that for connected graphs G and H, mu(G) is isomorphic to mu(H) if and only if G is isomorphic to H. Furthermore, we determine the energy of the Mycielskian of a connected regular graph G in terms of the energy epsilon(G) of G, where the energy of G is the sum of the absolute values of the eigenvalues of G. The energy of a graph has its origin in chemistry in that the energy of a conjugated hydrocarbon molecule computed using the Huckel theory in quantum chemistry coincides with the graph energy of the corresponding molecular graph. We show that if G is a regular graph of order n with epsilon(G) > 3n, then mu(G) is hyperenergetic.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [1] The Mycielskian of a Graph
    Rudnicki, Piotr
    Stewart, Lorna
    FORMALIZED MATHEMATICS, 2011, 19 (01): : 27 - 34
  • [2] Connectivity of the Mycielskian of a graph
    Balakrishnan, R.
    Raj, S. Francis
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2607 - 2610
  • [3] HUB PARAMETERS AND MYCIELSKIAN OF A GRAPH
    Mathad, Veena
    Sujatha, H. N.
    Puneeth, S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 221 - 236
  • [4] LOCAL COLORING FOR THE MYCIELSKIAN OF A GRAPH
    Deepa, P.
    Srinivasan, P.
    Sundarakannan, M.
    UTILITAS MATHEMATICA, 2018, 106 : 301 - 314
  • [5] b-Coloring of the Mycielskian of Regular Graphs
    Raj, S. Francis
    Gokulnath, M.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2019, 2019, 11394 : 91 - 96
  • [6] Spectra of the Mycielskian of a signed graph and related products
    Ul Rashid, Mir Riyaz
    Pirzada, S.
    Stanic, Zoran
    DISCRETE APPLIED MATHEMATICS, 2025, 370 : 124 - 144
  • [7] Some network topological notions of the Mycielskian of a graph
    Savitha, K. S.
    Vijayakumar, A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 31 - 37
  • [8] Spectra of the Mycielskian of a Signed Graph and Related Products
    ul Rashid, Mir Riyaz
    Pirzada, Shariefuddin
    Stanić, Zoran
    SSRN,
  • [9] The generalized 3-connectivity of the Mycielskian of a graph
    Li, Shasha
    Zhao, Yan
    Li, Fengwei
    Gu, Ruijuan
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 (882-890) : 882 - 890
  • [10] Reformulated Reciprocal Degree Distance and Reciprocal Degree Distance of the Complement of the Mycielskian Graph and Generalized Mycielskian
    Zhao, Feifei
    Bian, Hong
    Yu, Haizheng
    Liu, Min
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019