INTEGRABILITY AND SEIBERG-WITTEN EXACT SOLUTION

被引:423
|
作者
GORSKY, A
KRICHEVER, I
MARSHAKOV, A
MIRONOV, A
MOROZOV, A
机构
[1] LD LANDAU THEORET PHYS INST,MOSCOW 117940,RUSSIA
[2] UNIV UPPSALA,INST THEORET PHYS,S-75121 UPPSALA,SWEDEN
[3] INST THEORET & EXPTL PHYS,MOSCOW 117259,RUSSIA
[4] PN LEBEDEV PHYS INST,DEPT THEORY,MOSCOW 117924,RUSSIA
关键词
D O I
10.1016/0370-2693(95)00723-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The exact Seiberg-Witten (SW) description of the light sector in the N = 2 SUSY 4d Yang-Mills theory [N. Seiberg and E. Witten, Nucl. Phys. B 430 (1994) 485 (E); B 446 (1994) 19] is reformulated in terms of integrable systems and appears to be a Gurevich-Pitaevsky (GP) [A. Gurevich and L. Pitaevsky, JETP 65 (1973) 65; see also, S. Novikov, S. Manakov, L. Pitaevsky and V. Zakharov, Theory of solitons] solution to the elliptic Whitham equations, We consider this as an implication that the dynamical mechanism behind the SW solution is related to integrable systems on the moduli space of instantons. We emphasize the role of the Whitham theory as a possible substitute of the renormalization-group approach to the construction of low-energy effective actions.
引用
收藏
页码:466 / 474
页数:9
相关论文
共 50 条
  • [1] Integrability in Seiberg-Witten theory
    Morozov, A
    [J]. INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 93 - 102
  • [2] On the microscopic origin of integrability in the Seiberg-Witten theory
    A. V. Marshakov
    [J]. Theoretical and Mathematical Physics, 2008, 154 : 362 - 384
  • [3] On the microscopic origin of integrability in the Seiberg-Witten theory
    Marshakov, A. V.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 154 (03) : 362 - 384
  • [4] Exact solution to the Seiberg-Witten equation of noncommutative gauge theory
    Okawa, Y
    Ooguri, H
    [J]. PHYSICAL REVIEW D, 2001, 64 (04)
  • [5] Testing Seiberg-Witten solution
    Losev, A
    Nekrassov, N
    Shatashvili, S
    [J]. STRINGS, BRANES AND DUALITIES, 1999, 520 : 359 - 372
  • [6] Integrability and Seiberg-Witten theory - Curves and periods
    Itoyama, H
    Morozov, A
    [J]. NUCLEAR PHYSICS B, 1996, 477 (03) : 855 - 877
  • [7] Remarks on an exact Seiberg-Witten map
    Stern, A.
    [J]. PHYSICAL REVIEW D, 2009, 80 (06):
  • [8] Isomonodromic properties of the Seiberg-Witten solution
    Cappelli, A
    Valtancoli, P
    Vergnano, L
    [J]. NUCLEAR PHYSICS B, 1998, 524 (1-2) : 469 - 501
  • [9] Integrability, Seiberg-Witten models and Picard-Fuchs equations
    Isidro, JM
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2001, (01):
  • [10] Quantum duality under the θ-exact Seiberg-Witten map
    Carmelo P. Martin
    Josip Trampetic
    Jiangyang You
    [J]. Journal of High Energy Physics, 2016