On Hardy and Hardy-Littlewood transforms in classes of functions with given majorant of modulus of continuity

被引:0
|
作者
Volosivets, S. S. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya St 83, Saratov 410028, Russia
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2009年 / 75卷 / 1-2期
关键词
Hardy-Littlewood operator; generalized Lipschitz classes; real Hardy space; functions of vanishing mean oscillation; direct approximation theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the works of D.V. Giang and F. Moricz (see [5]) and B. I. Golubov (see [7]) it follows that the Hardy-Littlewood operator B(f)(x) = x(-1) integral(x)(0) f(t) dt, x not equal 0, is bounded on BMO(R). We prove that B is also bounded on VMO(R) and that the generalized Lipschitz classes H-X(omega) (R) under additional conditions are invariant with respect to the operator B. A direct approximation theorem for VMO(R) is also obtained.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [1] On the Hardy-Littlewood majorant problem
    Green, B
    Ruzsa, IZ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 511 - 517
  • [2] Orlicz classes of hardy-littlewood maximal functions
    Delgado, M
    Guerra, PJ
    OSAKA JOURNAL OF MATHEMATICS, 1998, 35 (01) : 1 - 14
  • [3] On the Hardy-Littlewood majorant problem for arithmetic sets
    Krause, Ben
    Mirek, Mariusz
    Trojan, Bartosz
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 164 - 181
  • [4] On the Hardy-Littlewood majorant problem for random sets
    Mockenhaupt, G.
    Schlag, W.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (04) : 1189 - 1237
  • [5] On mockenhoupt’s conjecture in the Hardy-Littlewood majorant problem
    S. Krenedits
    Journal of Contemporary Mathematical Analysis, 2013, 48 : 91 - 109
  • [6] Continuity of Hardy-Littlewood Maximal Function
    Di WU
    Dun-yan YAN
    Acta Mathematicae Applicatae Sinica, 2020, 36 (04) : 982 - 990
  • [7] Continuity of Hardy-Littlewood Maximal Function
    Di Wu
    Dun-yan Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 982 - 990
  • [8] Continuity of Hardy-Littlewood Maximal Function
    Wu, Di
    Yan, Dun-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 982 - 990
  • [9] MODULI OF CONTINUITY AND A HARDY-LITTLEWOOD THEOREM
    NOLDER, CA
    OBERLIN, DM
    LECTURE NOTES IN MATHEMATICS, 1988, 1351 : 265 - 272
  • [10] On mockenhoupt's conjecture in the Hardy-Littlewood majorant problem
    Krenedits, S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2013, 48 (03): : 91 - 109