In this work, we study discrete variational problems, for B-spline curves, which are invariant under translation and rotation. We show this approach has advantages over studying smooth variational problems whose solutions are approximated by B-spline curves. The latter method has been well studied in the literature but leads to high order approximation problems. We are particularly interested in Lagrangians that are invariant under the special Euclidean group for which B-spline approximated curves are well suited. The main application we present here is the curve completion problem in 2D and 3D. Here, the aim is to find various aesthetically pleasing solutions as opposed to a solution of a physical problem. Smooth Lagrangians with special Euclidean symmetries involve curvature, torsion, and arc length. Expressions of these, in the original coordinates, are highly complex. We show that, by contrast, relatively simple discrete Lagrangians offer excellent results for the curve completion problem. The novel methods we develop for the discrete curve completion problem are general, and can be used to solve other discrete variational problems for B-spline curves. Our method completely avoids the difficulties of high order smooth differential invariants.