NONCOMMUTATIVE LOCAL ALGEBRA

被引:6
|
作者
ROSENBERG, AL
机构
[1] Max-Plank-Institut für Mathematik, Bonn, 53225
关键词
D O I
10.1007/BF01896408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this work is to introduce the first notions of noncommutative algebraic geometry - the spectrum of an abelian category, localizations at points of the spectrum, canonical topologies, supports, associated points etc. - and to study their basic properties.
引用
收藏
页码:545 / 585
页数:41
相关论文
共 50 条
  • [1] The local multiplier algebra: Blending noncommutative ring theory and functional analysis
    Mathieu, Martin
    MODULES AND COMODULES, 2008, : 301 - 312
  • [2] Elements of Noncommutative Algebra
    Kharchenko, Vladislav
    QUANTUM LIE THEORY: A MULTILINEAR APPROACH, 2015, 2150 : 1 - 69
  • [3] Noncommutative linear algebra
    Osofsky, Barbara L.
    Algebra and its Applications, 2006, 419 : 231 - 254
  • [4] ON THE SOCLE OF A NONCOMMUTATIVE JORDAN ALGEBRA
    LOPEZ, AF
    PALACIOS, AR
    MANUSCRIPTA MATHEMATICA, 1986, 56 (03) : 269 - 278
  • [5] Noncommutative Algebra to Signal Processing
    Glazunov, Nikolaj
    Yanovsky, Felix
    2014 15TH INTERNATIONAL RADAR SYMPOSIUM (IRS), 2014,
  • [6] The Weil Algebra of a Hopf Algebra I: A Noncommutative Framework
    Michel Dubois-Violette
    Giovanni Landi
    Communications in Mathematical Physics, 2014, 326 : 851 - 874
  • [7] The Weil Algebra of a Hopf Algebra I: A Noncommutative Framework
    Dubois-Violette, Michel
    Landi, Giovanni
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (03) : 851 - 874
  • [8] Heisenberg algebra for noncommutative Landau problem
    Li Kang
    Cao Xiao-Hua
    Wang Dong-Yan
    CHINESE PHYSICS, 2006, 15 (10): : 2236 - 2239
  • [9] Noncommutative Pfaffians associated with the orthogonal algebra
    Artamonov, D. V.
    Golubeva, V. A.
    SBORNIK MATHEMATICS, 2012, 203 (12) : 1685 - 1714
  • [10] On the module of differentials of a noncommutative algebra and symmetric biderivations of a semiprime algebra
    Hongan, M
    Komatsu, H
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) : 669 - 692