2-WAY ROUNDING

被引:11
|
作者
KNUTH, DE
机构
关键词
ROUNDING; PARTIAL SUMS; NETWORK FLOWS; DISCREPANCY;
D O I
10.1137/S0895480194264757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given n real numbers 0 less than or equal to x(1),...,x(n) < 1 and a permutation sigma of {1,...,n}, we can always find ($) over bar x(1),...,($) over bar x(n) is an element of {0,1} so that the partial sums ($) over bar x(1) +...+ ($) over bar x(k) and ($) over bar x(sigma 1) +...+ x(sigma k) by at most n/(n+1), for 1 less than or equal to k less than or equal to n. The latter bound is best possible. The proof uses an elementary argument about flows in a certain network, and leads to a simple algorithm that finds an optimum way to round.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 50 条