The kinetics of thymol hydrogenation on a well-characterized supported platinum catalyst have been investigated in cyclohexane at temperatures between 313 and 373 K and under 3 MPa of hydrogen pressure. The relative rate constants of the different reaction pathways (hydrogenation via menthone or isomenthone, and direct hydrogenation to the four menthol diastereoisomers) were determined from the changes in composition of the reaction medium during the reaction process. It has been shown that hydrogenation via the menthone intermediates is the major route, the formation of the cis isomer (isomenthone) being favoured. The configuration of the menthols, produced from direct hydrogenation or from the ketone intermediates, is controlled by the geometry of adsorption of the precursors on the metal surface, so that neoisomenthol with all substituents in the cis position is by far the most abundant stereoisomer produced. © 1993 Academic Press, Inc.