Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

被引:1
|
作者
Ni, Meng [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Bldg Energy Res Grp, Kowloon, Hong Kong, Peoples R China
来源
ADVANCES IN ENERGY RESEARCH | 2013年 / 1卷 / 01期
关键词
compact reformer; fuel processing; porous media; hydrogen production; methane carbon dioxide reforming;
D O I
10.12989/eri.2013.1.1.053
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.
引用
收藏
页码:53 / 78
页数:26
相关论文
共 50 条
  • [1] 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer
    Ni, Meng
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2013, 65 : 155 - 163
  • [2] Separate production of hydrogen and carbon monoxide by carbon dioxide reforming reaction of methane
    Takayasu, O
    Sato, F
    Ota, K
    Hitomi, T
    Miyazaki, T
    Osawa, T
    Matsuura, I
    [J]. ENERGY CONVERSION AND MANAGEMENT, 1997, 38 : S391 - S396
  • [3] Hydrogen production and carbon sequestration by steam methane reforming and fracking with carbon dioxide
    Andrews, John W.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (16) : 9279 - 9284
  • [4] Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer
    Halabi, M. H.
    de Croon, M. H. J. M.
    van der Schaaf, J.
    Cobden, P. D.
    Schouten, J. C.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2008, 137 (03) : 568 - 578
  • [5] The evaluation of methane mixed reforming reaction in an industrial membrane reformer for hydrogen production
    Jokar, Seyyed Mohammad
    Parvasi, Payam
    Basile, Angelo
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) : 15321 - 15329
  • [6] The reforming of methane with carbon dioxide
    Rynkowski, JM
    [J]. PRZEMYSL CHEMICZNY, 2003, 82 (8-9): : 766 - 768
  • [7] Carbon Dioxide Reforming of Methane
    V. V. Nedolivko
    G. O. Zasypalov
    A. V. Vutolkina
    P. A. Gushchin
    V. A. Vinokurov
    L. A. Kulikov
    S. V. Egazar’yants
    E. A. Karakhanov
    A. L. Maksimov
    A. P. Glotov
    [J]. Russian Journal of Applied Chemistry, 2020, 93 : 765 - 787
  • [8] Carbon Dioxide Reforming of Methane
    Nedolivko, V. V.
    Zasypalov, G. O.
    Vutolkina, A. V.
    Gushchin, P. A.
    Vinokurov, V. A.
    Kulikov, L. A.
    Egazar'yants, S., V
    Karakhanv, E. A.
    Maksimov, A. L.
    Glotov, A. P.
    [J]. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2020, 93 (06) : 765 - 787
  • [9] Design and evaluation of a heat-integrated hydrogen production system by reforming methane and carbon dioxide
    Wu, Wei
    Liou, Yan-Chi
    Yang, Hsiao-Tung
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2013, 44 (06) : 929 - 935
  • [10] Effect of ceria morphology on hydrogen production via methane steam reforming for membrane reformer
    Baudh, Anjali
    Garjola, Meenakshi
    Sharma, Rahul
    Sharma, Sweta
    Upadhyay, Rajesh Kumar
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 102 (11): : 3803 - 3816