HYPER-SPECTRAL DATA CLUSTERING METHOD BASED UPON THE SENSITIVE SUBSPACE

被引:0
|
作者
Zhao, Wencang [1 ]
Wang, Wei [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266042, Peoples R China
关键词
Sensitive dimension; sensitive subspace; clustering methods; parzen window algorithm; RPCL; hyper-spectral data;
D O I
10.1142/S1793005707000756
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We put forward a quick clustering method for large numbers of data, with high dimensions, which is based on sensitive subspace consisting of the data set's sensitive dimensions. We first estimate the probability density of each dimension by the parzen window algorithm, enhance its optional ability through extracting zeroes and smoothness processing, then through the recognition of the number of the rallying points and the gain of the sensitive dimensions in order to compose the sensitive subspace, and lastly, we perform the Rival Penalized Competitive Learning (RPCL) clustering in the subspace. Moreover, we detected the red tide of hyper-spectral data using this method. Furthermore, the overall improvement in terms of the computational speed is about nine times faster.
引用
收藏
页码:271 / 280
页数:10
相关论文
共 50 条
  • [1] Tracking in hyper-spectral data
    Streit, RL
    Graham, ML
    Walsh, MJ
    [J]. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 852 - 859
  • [2] Hyper-spectral data based investigations for snow wetness mapping
    Shekhar, Chander
    Srivastava, Sunita
    Negi, Harendra Singh
    Dwivedi, Manish
    [J]. GEOCARTO INTERNATIONAL, 2019, 34 (06) : 664 - 687
  • [3] Hyper-Spectral Image Segmentation Using Spectral Clustering With Covariance Descriptors
    Kursun, Olcay
    Karabiber, Fethullah
    Koc, Cemalettin
    Bal, Abdullah
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS VII, 2009, 7245
  • [4] Segmentation and classification of hyper-spectral skin data
    Kazianka, Hannes
    Leitner, Raimund
    Pilz, Juergen
    [J]. DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, : 245 - +
  • [5] Impact of irreversible data compression on spectral distortion of hyper-spectral data
    Aiazzi, B
    Baronti, S
    Santurri, L
    Selva, M
    Alparone, L
    [J]. GEOINFORMATION FOR EUROPEAN-WIDE INTEGRATION, 2003, : 107 - 112
  • [6] Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data
    Sadeghi, A.
    Dinter, T.
    Vountas, M.
    Taylor, B. B.
    Altenburg-Soppa, M.
    Peeken, I.
    Bracher, A.
    [J]. OCEAN SCIENCE, 2012, 8 (06) : 1055 - 1070
  • [7] Fast robust fuzzy clustering based on bipartite graph for hyper-spectral image classification
    Liu, Han
    Wu, Chengmao
    Li, Changxing
    Zuo, Yanqun
    [J]. IET IMAGE PROCESSING, 2022, 16 (13) : 3634 - 3647
  • [8] SALIENCY BASED VISUALIZATION OF HYPER-SPECTRAL IMAGES
    Khan, Haris Ahmad
    Khan, Muhammad Murtaza
    Khurshid, Khurram
    Chanussot, Jocelyn
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1096 - 1099
  • [9] Multidimensional images clustering method based sensitive subspace
    Zhao, Wencang
    Sui, Shulin
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 524 - 529
  • [10] Hyper-spectral image compression scheme based on spectral character
    Image Processing Center, Beihang University, Beijing 100083, China
    [J]. Yuhang Xuebao, 2006, 5 (1023-1028):